Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, ку­курузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в кор­нях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклет­никах. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, ва­куоли, цитоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержа­ние ее достигает 98%. При наибольшей оводненности содержание воды в цито­плазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотическисвязанная) и свободная вода. В оболочке растительной клетки вода связана, главным образом, высокополимер­ными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотическисвязанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в цитоплаз­ме имеется определенное количество ионов, а, следовательно, часть воды осмо­тически связана.

Физиологическое значение свободной и связанной воды различно. Как счита­ет большинство исследователей, интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и ус­тойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Для своего нормального существования клетки и растительный организм в целом должны содержать определенное количество воды. Однако это легко осущест­вимо лишь для растений, произрастающих в воде. Для сухопутных растений эта задача осложняется тем, что вода в растительном организме непрерывно теря­ется в процессе испарения. Испарение воды растением достигает огромных раз­меров. Можно привести такой пример: одно растение кукурузы испаряет за вегетационный период до 180 кг воды, а 1 га леса в Южной Америке испаряет в среднем за сутки 75 тыс. кг воды. Огромный расход воды связан с тем, что большинство растений обладает значительной листовой поверхностью, нахо­дящейся в атмосфере, не насыщенной парами воды. Вместе с тем развитие обширной поверхности листьев необходимо и выработалось в процессе длитель­ной эволюции для обеспечения нормального питания углекислым газом, со­держащимся в воздухе в ничтожной концентрации (0,03%). В своей знаменитой книге «Борьба растений с засухой» К.А. Тимирязев указывал, что противоречие между необходимостью улавливать углекислый газ и сокращать расходование воды наложило отпечаток на строение всего растительного организма.

Для того чтобы возместить потери воды при испарении, в растение должно непрерывно поступать большое ее количество. Непрерывно идущие в растении два процесса - поступление и испарение воды - называют водным балансом растений. Для нормального роста и развития растений необходимо, чтобы рас­ход воды примерно соответствовал приходу, или, иначе говоря, чтобы растение сводило свой водный баланс без большого дефицита. Для этого в растении в процессе естественного отбора выработались приспособления к поглощению воды (колоссально развитая корневая система), к передвижению воды (специ­альная проводящая система), к сокращению испарения (система покровных тка­ней и система автоматически закрывающихся устьичных отверстий).

Несмотря на все указанные приспособления, в растении часто наблюдается водный дефицит, т. е. поступление воды не уравновешивается ее расходованием в процессе транспирации.

Физиологические нарушения наступают у разных растений при разной сте­пени водного дефицита. Есть растения, выработавшие в процессе эволюции раз­нообразные приспособления к перенесению обезвоживания (засухоустойчивые растения). Выяснение физиологических особенностей, определяющих устой­чивость растений к недостатку воды,- важнейшая задача, разрешение которой имеет большое не только теоретическое, но и сельскохозяйственное практиче­ское значение. Вместе с тем, для того чтобы ее решить, необходимо знание всех сторон водообмена растительного организма.

Свойства воды и ее роль в клетке:

На первом месте среди веществ клетки стоит вода. Она составляет около 80% массы клетки. Вода важна для живых организмов вдвойне, ибо она необходима не только как компонент клеток, но для многих и как среда обитания.

1. Вода определяет физические свойства клетки - ее объем, упругость.

2. Многие химические процессы протекают только в водном растворе.

3. Вода - хороший растворитель: многие вещества поступают в клетку из внешней среды в водном растворе, и в водном же растворе отработанные продукты выводятся из клетки.

4. Вода обладает высокой теплоемкостью и теплопроводностью.

5. Вода обладает уникальным свойством: при охлаждении ее от +4 до 0 градусов, она расширяется. Поэтому лед оказывается легче жидкой воды и остается на ее поверхности. Это очень важно для организмов, обитающих в водной среде.

6. Вода может быть хорошим смазочным материалом.

Биологическая роль воды определяется малыми размерами ее молекул, их полярностью и способностью соединяться друг с другом водородными связями.

Биологические функции воды:

транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

метаболическая. Вода является средой для всех биохимических реакций, донором электронов при фотосинтезе; она необходима для гидролиза макромолекул до их мономеров.

вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме.

За очень немногими исключениями (кость и эмаль зуба), вода является преобладающим компонентом клетки. Вода необходима для метаболизма (обмена) клетки, так как физиологические процессы происходят исключительно в водной среде. Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.

Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95% всей воды в клетке и используется главным образом как растворитель и как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на долю которой приходится всего 4% всей воды клетки, непрочно соединена с белками водородными связями.

Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты

Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке. Содержание воды в организме зависит от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе (90%) и с возрастом постепенно уменьшается. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Например, в сером веществе мозга воды до 80%, а в костях до 20%. Вода - основное средство перемещения веществ в организме (ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит «смазочным» материалом, необходимым везде, где есть трущиеся поверхности (например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.

1. Какое строение имеет вода?

Ответ. Молекула воды имеет угловое строение: входящие в её состав ядра образуют равнобедренный треугольник, в основании которого находятся два водорода, а в вершине – атом кислорода. Межъядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из шести электронов, составляющих внешний электронный слой атома кислорода в молекуле воды, две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподелёные электронные пары.

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды.

2. Какое количество воды (в %) содержится в различных клетках?

Количество воды неодинаково в разных тканях и органах. Так, у человека в сером веществе головного мозга ее содержание составляет 85 %, а в костной ткани - 22 %. Наибольшее содержание воды в организме наблюдается в эмбриональный период (95 %) и с возрастом постепенно уменьшается.

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, цитоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в цитоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%. Формы воды в разных частях растительной клетки также различны.

3. Какова роль воды в живых организмах?

Ответ. Вода - преобладающий компонент всех живых организмов. Она обладает уникальными свойствами благодаря особенностям строения: молекулы воды имеют форму диполя и между ними образуются водородные связи. Среднее содержание воды в клетках большинства живых организмов составляет около 70%. Вода в клетке присутствует в двух формах: свободной (95% всей воды клетки) и связанной (4-5% связаны с белками) .

Функции воды:

1.Вода как растворитель. Многие химические реакции в клетке являются ионными, поэтому протекают только в водной среде. Вещества, растворяющиеся в воде, называются гидрофильными (спирты, сахара, альдегиды, аминокислоты), не растворяющиеся - гидрофобными (жирные кислоты, целлюлоза).

2.Вода как реагент. Вода участвует во многих химических реакциях: реакциях полимеризации, гидролиза, в процессе фотосинтеза.

3.Транспортная функция. Передвижение по организму вместе с водой растворенных в ней веществ к различным его частям и выведение ненужных продуктов из организма.

4.Вода как термостабилизатор и терморегулятор. Эта функция обусловлена такими свойствами воды, как высокая теплоемкость - смягчает влияние на организм значительных перепадов температуры в окружающей среде; высокая теплопроводность - позволяет организму поддерживать одинаковую температуру во всем его объеме; высокая теплота испарения - используется для охлаждения организма при потоотделении у млекопитающих и транспирации у растений.

5.Структурная функция. Цитоплазма клеток содержит от 60 до 95 % воды, и именно она придает клеткам их нормальную форму. У растений вода поддерживает тургор (упругость эндоплазматической мембраны) , у некоторых животных служит гидростатическим скелетом (медузы)

Вопросы после § 7

1. В чём особенность строения молекулы воды?

Ответ. Уникальные свойства воды определяются структурой её молекулы. Молекула воды состоит из атома О, связанного с двумя атомами Н полярными ковалентными связями. Характерное расположение электронов в молекуле воды придаёт ей электрическую асимметрию. Более электроотрицательный атом кислорода притягивает электроны атомов водорода сильнее, в результате общие пары электронов смещены в молекуле воды в его сторону. Поэтому, хотя молекула воды в целом не заряжена, каждый из двух атомов водорода обладает частично положительным зарядом (обозначаемым 8+), а атом кислорода несёт частично отрицательный заряд (8-). Молекула воды поляризована и является диполем (имеет два полюса).

Частично отрицательный заряд атома кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул. Таким образом, каждая молекула воды стремится связаться водородной связью с четырьмя соседними молекулами воды.

2. Каково значение воды как растворителя?

Ответ. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания). Хорошо растворяются в воде и некоторые неионные, но полярные соединения, т. е. в молекуле которых присутствуют заряженные (полярные) группы, например сахара, простые спирты, аминокислоты. Вещества, хорошо растворимые в воде, называются гидрофильными (от греч. hygros – влажный и philia – дружба, склонность). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает. Это объясняет, почему вода является основной средой, в которой протекает большинство химических реакций, а все реакции гидролиза и многочисленные окислительно-восстановительные реакции идут при непосредственном участии воды.

Вещества, плохо или вовсе нерастворимые в воде, называются гидрофобными (от греч. phobos – страх). К ним относятся жиры, нуклеиновые кислоты, некоторые белки и полисахариды. Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет неполярные вещества, для живых организмов также очень важен. К числу важных в физиологическом отношении свойств воды относится её способность растворять газы (О2, СО2 и др.).

3. Что такое теплопроводность и теплоёмкость воды?

Ответ. Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).

4. Почему считают, что вода является идеальной жидкостью для клетки?

Ответ. Высокое содержание воды в клетке - важнейшее условие ее деятельности. При потере большей части воды многие организмы гибнут, а ряд одноклеточных и даже многоклеточных организмов временно утрачивает все признаки жизни. Такое состояние называется анабиозом. После увлажнения клетки пробуждаются и становятся вновь активными.

Молекула воды электронейтральна. Но электрический заряд внутри молекулы распределен неравномерно: в области атомов водорода (точнее, протонов) преобладает положительный заряд, в области, где расположен кислород, выше плотность отрицательного заряда. Следовательно, частица воды - это диполь. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты. Способностью воды образовывать гидраты обусловлены ее универсальные растворяющие свойства. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами воды, то вещество растворяется. В зависимости от этого различают гидрофильные (греч. hydros - вода и phileo - люблю) вещества, хорошо растворимые в воде (например, соли, щелочи, кислоты др.), и гидрофобные (греч. hydros - вода и phobos - боязнь) вещества, трудно или вовсе не растворимые в воде (жиры, жироподобные вещества, каучук и др.). В состав клеточных мембран входят жироподобные вещества, ограничивающие переход из наружной среды в клетки и обратно, а также из одних частей клетки в другие.

Большинство реакций, протекающих в клетке, могут идти только в водном растворе. Вода - непосредственный участник многих реакций. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза (греч. hydros - вода и lysis - расщепление).

Вода имеет высокую теплоемкость и одновременно относительно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.

Вода - основная среда для протекания биохимических реакций клетки. Она источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции углекислого газа. И наконец, вода - основное средство передвижения веществ в организме (ток крови и лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке.

5. Какова роль воды в клетке

Обеспечение упругости клетки. Последствия потери клеткой воды увядание листьев, высыхание плодов;

Ускорение химических реакций за счет растворения веществ в воде;

Обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;

Обеспечение растворения многих химических веществ (ряда солей, сахаров);

Участие в ряде химических реакций;

Участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

6. Какие структурные и физико-химические свойства воды определяют её биологическую роль в клетке?

Ответ. Структурные физико-химические свойства воды определяют ее биологические функции.

Вода является хорошим растворителем. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания).

Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).

Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму. Следовательно, высокая удельная теплоёмкость и высокая теплопроводность делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.

Вода практически не сжимается, создавая тургорное давление, определяя объём и упругость клеток и тканей. Так, именно гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.

Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения, которое возникает благодаря образованию водородных связей между молекулами воды и молекулами других веществ. Благодаря силе поверхностного натяжения происходит капиллярный кровоток, восходящий и нисходящий токи растворов в растениях.

В определенных биохимических процессах вода выступает в качестве субстрата.

Жизнедеятельность клеток, тканей и органов растений обусловлена ​​наличием воды. Вода является конституционной веществом. Определяя структуру цитоплазмы клеток и ее органелл, благодаря полярности молекул она является растворителем органических и неорганических соединений, участвующих в обмене веществ, и выступает фоновым средой, в которой происходят все биохимические процессы. Легко проникая через оболочки и мембраны клеток, вода свободно циркулирует по всему растению, обеспечивая перенос веществ и тем способствуя единства метаболических процессов организма. Благодаря высокой прозрачности, вода не препятствует поглощению солнечной энергии хлорофиллом.

Состояние воды в клетках растений

Вода в клетке представлена ​​в нескольких формах, принципиально отличаются. Основными из них являются конституционное, сольватная, капиллярная и резервная вода.

Часть молекул воды, входящих в клетку, образует водородные связи с рядом радикалов молекул органических веществ. Особенно легко водородные связи образуют такие радикалы:

Эту форму воды принято называть конституционной . Она содержится клеткой с силой до 90 тыс. Барр.

Благодаря тому, что молекулы воды является диполями, они образуют с заряженными молекулами органических веществ цельные агрегаты. Такая вода, связанная с молекулами органических веществ цитоплазмы силами электрического притяжения, получила название сольватной . В зависимости от типа растительной клетки на долю сольватной воды приходится от 4 до 50% ее общего количества. Сольватная вода подобно конституционной не имеет подвижности и не является растворителем.

Значительная часть воды клетки является капиллярной , поскольку она размещается в полостях между макромолекулами. Сольватная и капиллярная вода удерживается клеткой с силой, которую называют матричным потенциалом. Он равен 15-150 бар.

Резервной называют воду, находящуюся внутри вакуолей. Содержание вакуолей собой раствор сахаров, солей и ряда других веществ. Поэтому резервная вода удерживается клеткой с силой, которая определяется величиной осмотического потенциала вакуолярного содержания.

Поглощение воды клетками растений

Поскольку для молекул воды в клетках нет активных переносчиков, то ее перемещение в клетки и из клеток, а также между соседними клетками осуществляется только по законам диффузии. Поэтому градиенты концентрации растворенных веществ оказываются основными двигателями для молекул воды.

Растительные клетки в зависимости от их возраста и состояния поглощают воду, используя последовательное включение трех механизмов: имбибиция, сольватации и осмоса.

Имбибиция . При прорастании семян начинает поглощать воду благодаря механизму имбибиция. При этом заполняются вакантные водородные связи органических веществ протопласта, и вода активно поступает из окружающей среды в клетку. По сравнению с другими силами, действующими в клетках, имбибицийни силы колоссальные. Для некоторых водородных связей они достигают величины 90 тыс. Барр. При этом семена могут набухать и прорастать в сравнительно сухих почвах. После заполнения всех вакантных водородных связей имбибиция останавливается и включается следующий механизм поглощения воды.

Сольватация . В процессе сольватации поглощения воды происходит путем построения гидратационных слоев вокруг молекул органических веществ протопласта. Общая обводненность клетки продолжает повышаться. Интенсивность сольватации существенно зависит от химического состава протопласта. Чем больше в клетке гидрофильных веществ, тем полнее используются силы сольватации. Гидрофильность уменьшается в ряду: белки -> углеводы -> жиры. Поэтому наибольшее количество воды на единицу веса путем сольватации поглощает белковое семена (горох, бобы, фасоль), промежуточную - крохмалисте (пшеница, рожь), а наименьшую - масличные (лен, подсолнечник).

Силы сольватации уступают по мощности силам имбибиция, но они все равно довольно значительные и достигают 100 бар. К концу процесса сольватации обводненность клетки настолько велика, что утворюется капиллярная влага, начинают возникать вакуоли. Однако с момента их образования сольватация прекращается, и дальнейшее поглощение воды возможно только за счет осмотического механизма.

Осмос . Осмотическое механизм поглощения воды действует только в клетках, которые имеют вакуоль. Направление движения воды при этом определяется соотношением осмотических потенциалов растворов, входящих в осмотическую систему.

Осмотическое потенциал клеточного сока, обозначается через Р, определяется по формуле:

Р = iRcT,

где Р - осмотическое потенциал клеточного сока

R - газовая постоянная, равная 0,0821;

Т - температура по шкале Кельвина;

i - изотонический коэффициент, указывающий на характер электролитической диссоциации растворенных веществ.

Изотонический коэффициент сам по себе равна

и = 1 + α (n + 1),

где α - степень электролитической диссоциации;

п - количество ионов, на которые диссоциирует молекула. Для неелектролитов п = 1.

Осмотическое потенциал почвенного раствора обычно обозначают греческой буквой π.

Молекулы воды всегда перемещаются из среды с меньшим осмотическим потенциалом в среду с большим осмотическим потенциалом. Итак, если клетка находится в почвенном (внешнем) растворе при Р> π, то вода поступает в клетки. Поступление воды в клетку прекращается при полном выравнивании осмотических потенциалов (вакуолярной сок входе поглощения воды разбавляется) или при достижения клеточной оболочкой пределы растяжимости.

Таким образом, клетки получают воду из окружающей среды только при одном условии: осмотическое потенциал клеточного сока должен быть выше, чем осмотическое потенциал окружающего раствора.

В случае если Р < π, имеет место отток воды из клетки во внешней раствор. В ходе водоотдачей объем протопласта постепенно зменьшуется, он отходит от оболочки, и в клетке возникают небольшие полости. Такое состояние называют Плазмолиз . Этапы плазмолизу показаны на рис. 3.18.

В случае если соотношение осмотических потенциалов соответствует условию Р = π, диффузии молекул воды вообще не происходит.

Большой фактический материал свидетельствует, что осмотическое потенциал клеточного сока растений колеблется в довольно широких пределах. В сельскохозяйственных растений в клетках корней он обычно лежит в амплитуде 5-10 бар, в клетках листьев может подниматься до 40 бар, а в клетках плодов - до 50 бар. У растений солончаков осмотическое потенциал клеточного сока достигает 100 бар.

Рис. 3.18.

А - клетка в состоянии тургора; Б - угловой; В - вогнутый; Г - выпуклый; Д - судорожный; Е - колпачковый. 1 - оболочка; 2 - вакуоль; 3 - цитоплазма; 4 - ядро; 5 - нити Гехта

В земной коре встречается около 100 химических элементов, но для жизни необходимы только 16 из них. Наиболее распространены в растительных организмах четыре элемента – водород, углерод, кислород, азот, которые образуют различные вещества. Основными компонентами растительной клетки являются вода, органические и минеральные вещества.

Вода – основа жизни. Содержание воды в растительных клетках колеблется от 90 до 10%. Она является уникальным веществом благодаря своим химическим и физическим свойствам. Вода необходима для процесса фотосинтеза, транспорта веществ, роста клеток, она является средой для многих биохимических реакций, универсальным растворителем и т.д.

Минеральные вещества (зола) – вещества, которые остаются после сжигания кусочка какого-либо органа. Содержание зольных элементов колеблется от 1% до 12% сухого веса. В растении встречаются почти все элементы, входящие в состав воды и почвы. Наиболее часто встречаются калий, кальций, магний, железо, кремний, сера, фосфор, азот (макроэлементы) и медь, алюминий, хлор, молибден, бор, цинк, литий, золото (микроэлементы). Минеральные вещества играют важную роль в жизнедеятельности клеток – они входят в состав аминокислот, ферментов, АТФ, электронтранспортных цепей, необходимы для стабилизации мембран, участвуют в процессах обмена и т.д.

Органические вещества растительной клетки подразделяются на: 1) углеводы, 2) белки, 3) липиды, 4) нуклеиновые кислоты, 5) витамины, 6) фитогормоны, 7) продукты вторичного метаболизма.

Углеводы составляют до 90% веществ, входящих в состав растительной клетки. Различают:

Моносахариды (глюкоза, фруктоза). Моносахариды образуются в листьях при фотосинтезе и легко превращаются в крахмал. Они накапливаются в плодах, реже в стеблях, луковицах. Моносахариды транспортируются из клетки в клетку. Они являются энергетическим материалом, участвуют в образовании гликозидов.

Дисахариды (сахароза, мальтоза, лактоза и др.) образуются из двух частиц моносахаров. Они накапливаются в корнеплодах и плодах.

Полисахариды – полимеры, которые очень широко распространенны в растительных клетках. К данной группе веществ относят крахмал, инулин, целлюлозу, гемицеллюлозу, пектиновые вещества, каллозу.

Крахмал – основное запасное вещество растительной клетки. Первичный крахмал образуется в хлоропластах. В зеленых частях растения он расщепляется до моно- и дисахаров и по флоэме жилок транспортируется в растущие части растения и органы запаса. В лейкопластах запасающих органов из сахарозы синтезируется вторичный крахмал в форме крахмальных зерен.

Молекула крахмала состоит из амилозы и амилопектина. Линейные цепи амилозы, состоящие из нескольких тысяч остатков глюкозы, способны спирально ветвиться и, таким образом, принимать более компактную форму. У разветвленного полисахприда амилопектина компактность обеспечивается интенсивным ветвлением цепей за счет образования 1,6-гликозидных связей. Амилопектин содержит приблизительно вдвое больше глюкозных остатков, чем амилоза.



С раствором Люголя водная суспензия амилозы дает темно-синюю окраску, суспензия амилопектина – красно-фиолетовую, суспензия крахмала – сине-фиолетовую.

Инулин – полимер фруктозы, запасной углевод семейства астровых. Находится в клетках в растворенном виде. Не дает окрашивания с раствором иода, окрашивается β-нафтолом в красный цвет.

Целлюлоза – полимер глюкозы. В целлюлозе заключено около 50% углерода, находящегося в растении. Данный полисахарид – основной материал клеточной стенки. Молекулы целлюлозы представляют собой длинные цепи, состоящие из остатков глюкозы. Из каждой цепи выступают наружу множество ОН-групп. Эти группы направлены во все стороны и образуют водородные связи с соседними цепями, что обеспечивает жесткое поперечное сшивание всех цепей. Цепи объединены друг с другом, образуя микрофибриллы, а последние объединяются в более крупные структуры – макрофибриллы. Прочность на разрыв при таком строении очень высока. Макрофибриллы, располагаясь слоями, погружены в цементирующий матрикс, состоящий из пектиновых веществ и гемицеллюлоз.

Целлюлоза в воде не растворяется, с раствором иода дает желтое окрашивание.

Пектины состоят из галактозы и галактуроновой кислоты. Пектиновая кислота представляет собой полигалактуроновую кислоту. Входят в состав матрикса клеточной стенки и обеспечивают ее эластичность. Пектины составляют основу срединной пластинки, образующейся между клетками после деления. Образуют гели.

Гемицеллюлозы – высокомолекулярные соединения смешанного состава. Входят в состав матрикса клеточной стенки. В воде не растворяются, гидролизуются в кислой среде.

Каллоза – аморфный полимер глюкозы, встречающийся в разных частях растительного организма. Каллоза образуется в ситовидных трубках флоэмы, а также синтезируется в ответ на повреждение или неблагоприятное воздействие.

Агар-агар – высокомолекулярный полисахарид, содержащийся в морских водорослях. Растворяется в горячей воде, а после охлаждения застывает.

Белки высокомолекулярные соединения, состоящие из аминокислот. Элементный состав – С, О, N, S, P.

Растения способны синтезировать все аминокислоты из более простых веществ. 20 основных аминокислот образуют все разнообразие белков.

Сложность строения белков и чрезвычайное разнообразие их функций затрудняют создание единой четкой классификации белков на какой-либо одной основе. По составу белки классифицируются на простые и сложные. Простые - состоят только из аминокислот, сложные - состоят из аминокислот и небелкового материала (простетичесой группы).

К простым белкам относят альбумины, глобулины, гистоны, проламины, глютеины. Альбумины – нейтральные белки, растворимы в воде, в растениях встречаются редко. Глобулины - нейтральные белки, нерастворимы в воде, растворимы в разбавленных солевых растворах, распространены в семенах, корнях, стеблях растений. Гистоны – нейтральные белки, растворимы в воде, локализованы в ядрах всех живых клеток. Проламины – растворимы в 60-80% этаноле, встречаются в зерновках злаков. Глютеины растворимы в растворах щелочей, содержатся в зерновках злаков, зеленых частях растений.

К сложным относят фосфопротеины (простетическая группа – фосфорная кислота), ликопротеины (углевод), нуклеопротеины (нуклеиновая кислота), хромопротеины (пигмент), липопротеины (липид), флавопротеины (ФАД), металлопротеины (металл).

Белки играют важную роль в жизнедеятельности растительного организма и в зависимости от выполняемой функции белки подразделяют на структурные белки, ферменты, транспортные белки, сократительные белки, запасные белки.

Липиды – органические вещества нерастворимые в воде и растворимые в органических растворителях (эфире, хлороформе, бензоле). Липиды делят на истинные жиры и липоиды.

Истинные жиры – сложные эфиры жирных кислот и какого-либо спирта. В воде образуют эмульсию, при нагревании со щелочами гидролизуются. Являются запасными веществами, накапливаются в семенах.

Липоиды – жироподобные вещества. К ним относят фосфолипиды (входят в состав мембран), воска (образуют защитный налет на листьях и плодах), стеролы (входят в состав протоплазмы, участвуют в образовании вторичных метаболитов), каротиноиды (красные и желтые пигменты, необходимы для защиты хлорофилла, придают окраску плодам, цветкам), хлорофилл (основной пигмент фотосинтеза)

Нуклеиновые кислоты - генетический материал всех живых организмов. Нуклеиновые кислоты (ДНК и РНК) состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты.

Витамины – сложные органические вещества разнообразного химического состава. Обладают высокой физиологической активностью – они необходимы для синтеза белков, жиров, для работы ферментов и др. Витамины подразделяют на жирорастворимые и водорастворимые. К жирорастворимым относят витамины группы А, К, Е, к водорастворимым – витсмин С, витамины группы В.

Фитогормоны – низкомолекулярные вещества с высокой физиологической активностью. Они оказывают регулирующее влияние на процессы роста и развития растений в очень низких концентрациях. Фитогормоны делят на стимуляторы (цитокинины, ауксины, гиббереллины) и ингибиторы (этилен и абсцизины).