При высоких температурах последний член в (5) можно опустить, и тогда изотерма будет гиперболой, асимптотами которой являются изобара Р = 0 и изохора V = b .

Для исследования изотерм при любых значениях Т умножим уравнение (4) на V 2 . После раскрытия скобок уравнение изотермы примет вид (6)

Это уравнение третьей степени по V , в которое давление Р входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости (V,P ) соответствует точка, в которой изобара Р = const пересекает изотерму. В первом случае, когда корень один и точка пересечения будет одна. Так будет, как мы видели, при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой MN .

При более низких температурах и надлежащих значениях давления Р уравнение (6) имеет три корня V 1 , V 2 , V 3 . В таких случаях изобара P = const пересекает изотерму в трех точках L, C, G (рис. 1). Изотерма содержит волнообразный участок LBCAG. Она сначала монотонно опускается вниз (участок DB ), затем на участке BA монотонно поднимается вверх, а за точкой A снова монотонно опускается. При некоторой промежуточной температуре три корня V 1 , V 2 , V 3 становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма FKH всюду монотонно опускается вниз, за исключением одной точки K, являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка K называется критической точкой. Соответствующие ей давление P k , объем V k и температура T k называются также критическими. Говорят, что вещество находится в критическом состоянии , если его объем и давление (а следовательно, и температура) равны критическим.

Для нахождения критических параметров P k , V k , T k учтем, что в критической точке уравнение (6) переходит в уравнение (7).

Поскольку в этом случае все три корня совпадают и равны V k , уравнение должно приводиться к виду (8).

Возводя в куб и сравнивая коэффициенты уравнений (7) и (8), получим три уравнения .

Решая их, найдем выражения для параметров критического состояния вещества: (9).

К тем же результатам можно прийти, заметив, что критическая точка К является точкой перегиба изотермы, касательная в которой горизонтальна, а поэтому в точке К должны соблюдаться соотношения .



Решая эти уравнения совместно с уравнением изотермы (4) придем к формулам (9).

Не все состояния вещества, совместимые с уравнением Ван-дер-Ваальса, могут быть реализованы в действительности. Для этого необходимо еще, чтобы они были термодинамически устойчивы. Одно из необходимых условий термодинамической устойчивости физически однородного вещества состоит в выполнении неравенства . Физически оно означает, что при изотермическом увеличении давления объем тела должен уменьшаться. Иными словами, при возрастании V все изотермы должны монотонно опускаться. Между тем, ниже критической температуры на изотермах Ван-дер-Ваальса имеются поднимающиеся участки типа BCA (рис. 1). Точки, лежащие на таких участках, соответствуют неустойчивым состояниям вещества, которые практически реализованы быть не могут. При переходе к практическим изотермам эти участки должны быть выброшены.

Таким образом, реальная изотерма распадается на две ветви EGA и BLD , отделенные друг от друга. Естественно предположить, что этим двум ветвям соответствуют различные агрегатные состояния вещества. Ветвь EA характеризуется относительно большими значениями объема или малыми значениями плотности, она соответствует газообразному состоянию вещества. Напротив, ветвь BD характеризуется относительно малыми объемами, а следовательно, большими плотностями, она соответствует жидкому состоянию вещества . Мы распространяем, следовательно, уравнение Ван-дер-Ваальса и на область жидкого состояния. Таким путем удается получить удовлетворительное качественное описание явления перехода газа в жидкость и обратно.

Возьмем достаточно разреженный газ при температуре ниже критической. Исходное состояние его на диаграмме PV изображается точкой E (рис. 1). Будем сжимать газ квазистатически, поддерживая температуру T постоянной. Тогда точка, изображающая состояние газа, будет перемещаться по изотерме вверх. Можно было думать, что она достигает крайнего положения A , где изотерма обрывается. В действительности, однако, начиная с некоторой точки G , давление в системе перестает повышаться, и она распадается на две физически однородные части, или фазы : газообразную и жидкую.

Процесс изотермического сжатия такой двухфазной системы изображается участком GL горизонтальной прямой. При этом во время сжатия плотности жидкости и газа остаются неизменными и равными их значениям в точках L и G соответственно. По мере сжатия количество вещества в газообразной фазе непрерывно уменьшается, а в жидкой фазе - увеличивается, пока не будет достигнута точка L, в которой все вещество перейдет в жидкое состояние.

Эндрюс систематически исследовал ход изотерм углекислоты (СО 2) при различных температурах и на основе этих исследований ввел понятие критической температуры. Углекислота им была выбрана сознательно, так как она обладает критической температурой (31 0 С), лишь незначительно превышающей комнатную, и сравнительно невысоким критическим давлением (72,9 атм). Оказалось, что при температуре выше 31 0 С изотермы углекислоты монотонно опускаются вниз, т.е. имеют гиперболический вид. Ниже этой температуры на изотермах углекислоты появляются горизонтальные участки, на которых изотермическое сжатие газа приводит к его конденсации, но не к увеличению давления. Таким путем было установлено, что сжатием газ можно превратить в жидкость только тогда, когда его температура ниже критической.

При специальных условиях могут быть реализованы состояния, изображаемые участками изотермы GA и BL. Эти состояния называются метастабильными. Участок GA изображает так называемый пересыщенный пар , участок BL - перегретую жидкость . Обе фазы обладают ограниченной устойчивостью. Каждая из них может существовать до тех пор, пока она не граничит с другой более устойчивой фазой. Например, пересыщенный пар переходит в насыщенный, если в него ввести капли жидкости. Перегретая жидкость закипает, если в нее попадают пузырьки воздуха или пара.

газ плазма кинетика термодинамический

В газе взаимодействие между молекулами слабо. По мере его усиления свойства газа все ближе отклоняются от свойств идеальных газов, и, в конце концов, переходит в концентрированное состояние - жидкость. В жидкости взаимодействие между молекулами велико и, следовательно, свойства жидкости зависят от конкретного рода жидкости. Поэтому невозможно установить какие либо общие формулы, которые количественно описывали бы свойства жидкости. Можно, однако, найти некоторую интерполяционную формулу, качественно описывающую переход между жидкостью и газом. Эта формула должна давать правильные результаты в двух предельных случаях. Для разреженных газов она должна переходить в формулы идеальных газов. При увеличении плотности она должна учитывает ограниченную сжимаемость веществ. Для получения такой формулы исследуем более подробно исследовать отклонение от идеальности при высоких температурах. Будем рассматривать одноатомный газ. По тем же соображениям формулы будут применимы и к многоатомным газам. Описанный ранее характер взаимодействия атомов газа позволяет определить вид первых членов разложения В(Т) относительно степени, обратной Т, при этом будем считать малым отношение U 0 /kT << 1.

Имея в виду, что U 12 есть функция только расстояния r между атомами, имеем. Разбивая область интегрирования по dr на две части, запишем:


Но при значениях r от 0 до 2r 0 потенциальная энергия U 12 очень велика. Поэтому в первом интеграле можно пренебречь членом exp(-U 12 /kT) по сравнению с единицей. Тогда интеграл становится равным положительной величине b = 16рr 0 3 /3 (если для одноатомного газа рассматривать r как радиус атома, то b есть его учетверенный объем). Во втором интеграле везде |U 12 |/kT < U 0 /kT << 1. Поэтому можно разложить подынтегральное выражение по степеням U 12 /kT, ограничиваясь первым неисчезающим членом. Тогда второй интеграл становится равным

где а - положительная постоянная. Таким образом, находим, что

Находим свободную энергию газа

Подставим в это выражение

которое мы получали раньше из статистической суммы для идеального газа. Тогда получим

При выводе формулы для свободной энергии газа мы предполагаем, что газ, недостаточного разрежен для того, чтобы считаться идеальным, однако имеет достаточно большой объем (так, что было можно пренебречь тройными и т.д. взаимодействиями), т.е. расстояние между молекулами значительно больше, чем их размеры. Можно сказать, что объем V газа, во всяком случае, значительно больше, чем Nb. Поэтому

Следовательно

В таком виде эта формула удовлетворяет поставленным выше условиям, т.к. при больших V она переходит в формулу для свободной энергии идеального газа, а при малых V она обнаруживает невозможность беспредельного сжатия газа (при V < Nb аргумент логарифма становится отрицательным). Зная свободную энергию, можно определить давление газа:

Это и есть искомое уравнения состояния реального газа - уравнение Ван-дер-Ваальса. Она является лишь одной из многих возможных интерполяционных формул. Ян Ван-дер-Ваальс вывел это уравнение в 1873 году (нобелевская премия 1910 года).

Энтропия реального газа из (*):

Энергия E = F + TS

Отсюда видно, что теплоемкость Ван-дер-Ваальсовского газа совпадет с теплоемкостью идеального газа (зависит только от Т) и может быть постоянной. Теплоемкость С р, как легко убедиться, зависит не только от Т, но и от V и поэтому не может сводиться к постоянной. Второй член в Е соответствует энергии взаимодействий газа. Он отрицателен, т.к. преобладают силы притяжения.

Приведенное уравнение состояния.

Запишем уравнение Ван-дер-Ваальса для одного моля газа:

Зависимости P(V) при постоянной температуре называются изотермами Ван-дер-Ваальса. Среди различных изотерм есть одна, которой соответствует критическое состояние, математически характеризуемое точкой перегиба. Приравнивая к нулю первую и вторую производные.

Уравнение Ван–дер–Ваальса:

где постоянные поправки а и b зависят от природы газа.


Поправка b учитывает объем, недоступный для движения молекул в силу конечности объема самих молекул и наличия взаимодействия между ними. Величина b составляет примерно учетверенный объем самих молекул.

Поправка а учитывает силы взаимного притяжения. Полагая, что внутреннее давление газа изменяется пропорционально квадрату плотности или обратно пропорционально квадрату удельного объема газа, Ван-дер-Ваальс принял его равным а/J 2 , где а – коэффициент пропорциональности.


Раскрывая скобки в левой части:

Умножая равенство на J 2 и разделив на р :


Полученное уравнение имеет три корня, т.е. при заданных параметрах р и Т имеется три значения переменной J, которые превращают уравнение в тождество.

Рассмотрим в системе координат р–J изотермы, построенные по уравнению Ван-дер-Ваальса.


Первый случай имеет место при высоких температурах, когда изотермы имеют вид кривых гиперболического характера (линия 1-2). Каждому давлению соответствует определенный удельный объем (давлению р а соответствует удельный объем J а). Тело в этом случае при любых давлениях находится в газообразном состоянии.


Второй случай имеет место при сравнительно низких температурах, когда изотермы имеют два перегиба (линия 3-4).

В этом случае между точками e и f находится область, в которой каждому давлению соответствует три значения удельного объема (давлению р а соответствуют удельные объемы J b , J с и J d), которые и являются тремя действительными и различными корнями уравнения Ван-дер-Ваальса.


Участок 3-b соответствует изотермическому сжатию тела, находящегося в газообразном состоянии, причем в точке b оно уже начинает переходить в жидкое состояние.

Точка d соответствует такому состоянию тела, когда оно уже полностью превратилось в жидкость, в соответствии с чем участок d-4 представляет собой изотермическое сжатие жидкости.


Точка с соответствует промежуточному двухфазному состоянию тела. Участок кривой b-f соответствует неустойчивому состоянию пара, а участок d-e – неустойчивому состоянию жидкости.

Что касается участка e-f, то он вообще физического смысла не имеет, поскольку в действительности при изотермическом сжатии тело переходит из газообразного в жидкое состояния при постоянном давлении, т.е. по горизонтальной линии b-d.


Третий случай имеет место при определенной для каждого тела температуре, когда точки b и d, сближаясь с повышением температуры, сливаются в одну точку k, в которой имеет место перегиб соответствующей изотермы, причем касательная к ней в этой точке имеет горизонтальное направление.


Точка k называется критической точкой, выше которой невозможно путем изотермического сжатия добиться перехода газа в жидкое состояние, а соответствующие ей параметры р кр, J кр и Т кр называются критическими параметрами.


Аналитически условия критического состояния тела выражаются уравнениями

Первое из них показывает, что критическая изотерма в точке k имеет горизонтальную касательную, второе – что изотерма имеет в точке k перегиб.

Используя эти уравнения совместно с уравнением состояния, можно определить значения критических параметров состояния газа.


Критические параметры определяются следующим образом .

Преобразуем уравнение Ван-дер-Ваальса:

Дифференцируем:


Определяем вторую производную:

Разделив первое уравнение на второе

и, следовательно ,

откуда


Уравнение Ван-дер-Ваальса можно представить в безразмерном виде с подстановкой.

Для реальных газов пользоваться результатами теории идеального газа следует с большой осторожностью. Во многих случаях необходимо переходить к более реалистичным моделям. Одной из большого числа таких моделей может служить газ Ван-дер-Ваальса . В этой модели учитываются собственный объем молекул и взаимодействия между ними. В отличие от уравнения Менделеева - Клапейрона pV= RT, справедливого для идеального газа, уравнение газа Ван-дер-Ваальса содержит два новых параметра а и Ь, не входящих в уравнение для идеального газа и учитывающих межмолекулярные взаимодействия (параметр а) и реальный (отличный от нуля) собственный объем (параметр Ь) молекул. Предполагается, что учет взаимодействия между молекулами в уравнении состояния идеального газа сказывается на величине давления р, а учет их объема приведет к уменьшению свободного для движения молекул пространства - объема V, занимаемого газом. Согласно Ван-дер-Ваальсу уравнение состояния одного моль такого газа записывается в виде:

где Ум - молярный объем величины (а/Ум) и Ь описывают отклонения газа от идеальности.

Величина a/V^, по размерности соответствующая давлению, описывает взаимодействие молекул между собой на больших (по сравнению с размерами самих молекул) расстояниях и представляет так называемое добавочное к внешнему «внутреннее давление» газа р. Константа Ъ в выражении (4.162) учитывает суммарный объем всех молекул газа (равна учетверенному объему всех молекул газа).

Рис. 4.24. К определению константы b в уравнении Ван-дер-Ваальса

Действительно, на примере двух молекул (рис. 4.24) можно убедиться, что молекулы (как абсолютно жесткие шары) не могут сблизиться друг с другом на расстояние, меньшее, чем 2г между их центрами,

т.е. область пространства, «выключенная» из общего объема, занимаемого газом в сосуде, которая приходится на две молекулы, имеет объем

В пересчете на одну молекулу это

ее учетверенный объем.

Поэтому (V M - b) есть доступный для движения молекул объем сосуда. Для произвольного объема V и массы т газа с молярной массой М уравнение (4.162) имеет вид

Рис. 4.25.

где v = т/М - число моль газа, а а"= v 2 a и Ь"= vb - константы (поправки) Ван-дер-Ваальса.

Выражение для внутреннего давления газа в (4.162) записано в виде a/Vj, по следующей причине. Как было сказано в подразделе 1.4.4, потенциальная энергия взаимодействия между молекулами в первом приближении хорошо описывается потенциалом Леннард- Джонса (см. рис. 1.32). На сравнительно больших расстояниях этот потенциал может быть представлен в виде зависимости U ~ г~ ь, где г - расстояние между молекулами. Поскольку сила F взаимодействия между молекулами связана с потенциальной энергией U как F - -grad U(r), то F ~ -г 7 . Число молекул в объеме сферы радиуса г пропорционально г 3 , поэтому суммарная сила взаимодействия между молекулами пропорциональна it 4 , а дополнительное «давление» (сила, отнесенная к площади, пропорциональной г 2) пропорционально г ь (или ~ 1/F 2). При малых значениях г проявляется сильное отталкивание между молекулами, которое косвенно учитывается

коэффициентом Ь.

Уравнение Ван-дер-Ваальса (4.162) может быть переписано в виде полиномиального (вириального) разложения по степеням У м (или У):

Относительно V M это уравнение кубическое, поэтому при заданной температуре Т должно иметь либо один вещественный корень, либо три (далее, полагая, что мы по-прежнему имеем дело с одним моль газа, опустим индекс М в V M , чтобы не загромождать формулы).

На рисунке 4.25 в координатахp(V) при различных температурах Т приведены изотермы, которые получаются в качестве решений уравнения (4.163).

Как показывает анализ этого уравнения, существует такое значение параметра Т- Г* (критическая температура), которое качественно разделяет различные типы его решений. При Т > Т к кривые p(V) монотонно спадают с ростом V, что соответствует наличию одного действительного решения (одно пересечение прямой р = const с изотермой p(V)) - каждому значению давления р соответствует только одно значение объема V. Иными словами, при Т > Т к газ ведет себя примерно как идеальный (точного соответствия нет и оно получается только при Т -> оо, когда энергией взаимодействия между молекулами по сравнению с их кинетической энергией можно пренебречь). При низких температурах, когда Т одному значению р соответствует три значения V, и форма изотерм принципиально изменяется. При Г= Т к изотерма Ван-дер-Ваальса имеет одну особую точку (одно решение). Этой точке соответствуют /^(критическое давление) и V K (критический объем). Эта точка соответствует состоянию вещества, названному критическим, и, как показывают эксперименты, в этом состоянии вещество не является ни газом, ни жидкостью (промежуточное состояние).

Экспериментальное получение реальных изотерм может быть осуществлено с помощью простого устройства, схема которого изображена на рис. 4.26. Устройство - это цилиндр с подвижным поршнем и манометром для измерения давления р. Измерение объема V производят по положению поршня. Вещество в цилиндре поддерживается при определенной температуре Т (находится в термостате).

Рис. 4.26.

Меняя его объем (опуская или поднимая поршень) и измеряя при этом давление, получают изотермуp(V).

Оказывается, что полученные таким образом изотермы (сплошные линии на рис. 4.25) заметно отличаются от теоретических (штрихпунктирная линия). При Т = Т и большйх V уменьшение объема приводит к увеличению давления соответственно расчетной кривой до точки N (штрихпунктирная изотерма на рис. 4.25). После этого уменьшение V не приводит к дальнейшему росту р. Иными словами, точка N соответствует началу конденсации, т.е. переходу вещества из состояния пара в состояние жидкости. При уменьшении объема от точки N к точке М давление остается постоянным, меняется только соотношение между количествами жидкого и газообразного вещества в цилиндре. Давление соответствует равновесию между паром и жидкостью и называется давлением насыщенного пара (отмечено на рис. 4.25 как р„. п). В точке М все вещество в цилиндре представляет собой жидкость. При дальнейшем уменьшении объема изотермы резко поднимаются вверх, что соответствует резкому уменьшению сжимаемости жидкости по сравнению с паром.

При увеличении температуры в системе, т.е. при переходе от одной изотермы к другой, длина отрезка MN уменьшается (А/УУ"при Т 2 > Т), и при Т=Т К он стягивается в точку. Огибающая всех отрезков вида MN образует колоколообразную кривую (бинодаль) - пунктирная кривая MKN на рис. 4.25, отделяющую двухфазную область (под колоколом бинодали) от однофазной - пара или жидкости. При Т> Т к никаким увеличением давления газообразное вещество превратить в жидкость уже нельзя. Этим критерием можно воспользоваться для проведения условного различия между газом и паром: при Т вещество может существовать и в виде пара, и в виде жидкости, но при Т > Т к никаким давлением газ в жидкость перевести нельзя.

В тщательно поставленных экспериментах можно наблюдать так называемые метастабильные состояния, характеризуемые участками МО и NL на изотерме Ван-дер-Ваальса при Т= Т (штрихпунктирная кривая на рис. 4.25). Эти состояния отвечают переохлажденному пару (участок МО) и перегретой жидкости (участок NL). Переохлажденный пар - это такое состояние вещества, когда по своим параметрам оно должно находиться в жидком состоянии, но по своим свойствам продолжает следовать газообразному поведению - стремится, например, расшириться при увеличении объема. И наоборот, перегретая жидкость - такое состояние вещества, когда оно по своим параметрам должно быть паром, но по свойствам остается жидкостью. Оба эти состояния метастабильны (т.е. неустойчивы): при небольшом внешнем воздействии вещество переходят в стабильное однофазное состояние. Участок OL (определенный математически из уравнения Ван-дер- Ваальса) соответствует отрицательному коэффициенту сжатия (с увеличением объема растет и давление!), оно не реализуется в опытах ни при каких условиях.

Константы а и b считаются независящими от температуры и являются, вообще говоря, разными для разных газов. Можно, однако, модифицировать уравнение Ван-дер-Ваальса так, чтобы ему удовлетворяли любые газы, если их состояния описываются уравнением (4.162). Для этого найдем связь между константами а и b и критическими параметрами: р к, V K n Т к. Из (4.162) для моль реального газа получаем 1:

Воспользуемся теперь свойствами критической точки. В этой точке величины йр/dV и tfp/dV 2 равны нулю, так эта точка является точкой перегиба. Из этого следует система трех уравнений:


1 Индекс М при объеме моль газа опущен для упрощения записи. Здесь и далее константы а и Ь по-прежнему приведены к одному моль газа.

Эти уравнения справедливы для критической точки. Решение их относительно/>*, У к, Гадает:

и, соответственно,


Из последнего соотношения в этой группе формул, в частности, следует, что для реальных газов постоянная R оказывается индивидуальной (для каждого газа со своим набором рк, У к, Т к она своя), и только для идеального или для реального газа вдали от критической температуры (при Т » Т к) ее можно полагать равной универсальной газовой постоянной R = k b N A . Физический смысл указанного различия кроется в процессах кластерообразования, происходящих в реальных газовых системах в докритических состояниях.

Критические параметры и константы Ван-дер-Ваальса для некоторых газов представлены в табл. 4.3.

Таблица 4.3

Критические параметры и константы Ван-дер-Ваальса

Если теперь подставить эти значения из (4.168) и (4.169) в уравнение (4.162) и выразить давление, объем и температуру в так называемых приведенных (безразмерных) параметрах л = р/р к, со = V/V K , т = Т/Т к, то оно (4.162) перепишется как:

Это уравнение Ван-дер-Ваальса в приведенных параметрах универсальное для всех ван-дер-ваальсовых газов (т.е. реальных газов, подчиняющихся уравнению (4.162)).

Уравнение (4.170) позволяет сформулировать закон, связывающий три приведенные параметра - закон соответственных состояний: если у каких-либо различных газов совпадают два из трех (л, со, т) приведенных параметров, то должны совпадать и значения третьего параметра. Говорят, что такие газы находятся в соответственных состояниях.

Запись уравнения Ван-дер-Ваальса в виде (4.170) позволяет также распространить связанные с ним представления на случай произвольных газов, которые уже ван-дер-ваальсовскими не являются. Уравнение (4.162), записанное в виде (4.164): p(V) = RT/(V-b)-a/V 2 , напоминает по форме разложение функции р(У) в ряд по степеням V (до второго члена включительно). Если считать (4.164) первым приближением, то уравнение состояния любого газа можно представить в универсальном виде:

где коэффициенты А„(Т) называются вириальными коэффициентами.

При бесконечном числе членов этого разложения оно может точно описать состояние любого газа. Коэффициенты А„(Т) являются функциями температуры. В различных процессах используются различные модели, и для их расчета теоретически оценивается, каким количеством членов этого разложения необходимо пользоваться в случаях разного рода газов для получения желаемой точности результата. Конечно, все модели реальных газов зависят от выбранного вида межмолекулярного взаимодействия, принятого при рассмотрении конкретной задачи.

  • Предложена в 1873 г. голландским физиком Я.Д. Ван-дер-Ваальсом.

Уравнение Ван-дер-Ваальса. Уравнение состояния реальных газов

Учет конечных размеров молекул и сил притяжения между ними позволяет получить уравнение состояния реальных газов из уравнений Клапейрона-Менделеева путем внесения поправки к давлению и поправки к объему:

Уравнение Ван-дер-Ваальса, записанное для 1 моль газа.

Поправка 6, внесенная к объему, учитывает объем, занимаемый молекулами реального газа, и мертвое пространство, т. е. объем зазоров между молекулами при их плотной упаковке.

Поправка к давлению учитывает силы взаимодействия между молекулами реальных газов. Эта поправка представляет собой внутреннее давление, возникающее из-за взаимного притяжения между молекулами. Воздействие молекул друг на друга осуществляется в пределах радиуса молекулярного действия. Сила притяжения двух элементарных объемов реального газа, имеющих размер порядка радиуса молекулярного действия, пропорциональна концентрации газа как одного, так и другого объема, т. е. пропорциональна квадрату концентрации, а следовательно, и квадрату плотности, т. е. обратно пропорциональна квадрату объема:

[п - концентрация, р - плотность].

Таким образом, общее давление в реальном газе складывается из внешнего и внутреннего давлений:

Иоханнес Дидерик Ван-дер-Ваал ьс (1837-1923) - нидерландский физик.

Работы посвящены молекулярной физике и изучению низкотемпературных явлений. В 1910 г. за работы, содержащие уравнения агрегатных состояний газов и жидкостей, удостоен Нобелевской премии. Разработал теорию бинарных смесей и термодинамическую теорию капиллярности. Исследования относятся также к электролитической диссоциации и гидростатике.

Константы а и Ь могут быть определены для каждого газа опытным путем по критическим параметрам.

Учитывая большое значение уравнения Ван-дер-Ваальса, остановимся на его характеристике более подробно. Рассмотрим графическое изображение изотерм Ван-дер-Ва-альса на диаграмме (рис. 2.24).

Как видно из диаграммы, вид изотерм зависит от температуры, при которой протекает изотермический процесс. На изотерме одному значению давления р соответствуют три значения объема.

Для изотермы характерно наличие точки перегиба, изотерма имеет вид плавной кривой, совпадающей с изотермой для идеального газа.

Уравнение Ван-дер-Ваальса - уравнение третьей степени относительно объема У, поэтому оно имеет или три вещественных корня (при Т < Гц), или один вещественный и два комплексно-сопряженных, не имеющих физического смысла (при Т> TJ корня, т. е. при температуре ниже Тк одному значению давления соответствуют три значения объема, при температуре выше Тк одному значению давления соответствует одно значение объема. Отсюда следует, что при температуре выше Тж вещество находится в однофазном газообразном состоянии, а при температуре ниже Тк вещество одновременно находится в двух фазовых состояниях.

Сравнение изотерм Ван-дер-Ваальса с экспериментальными

Физическая сущность уравнения Ван-дер-Ваальса выясняется при рассмотрении экспериментальных изотерм, полученных в 1868 г. Т. Эндрюсом при исследовании углекислоты (рис. 2.25).

Как показывают экспериментальные изотермы, при переход вещества из одной фазы в другую совершается при постоянном давлении р (прямая АВ на рис. 2.25). Если из исследуемой жидкости предварительно удалить воздух и различные примеси, то экспериментально можно обнаружить участок изотермы АВ (см. рис. 2.24). Участок изотермы АВ описывает перегретую жидкость, т. е. такую жидкость, которая при температуре кипения некоторое время не переходит в пар, расширяясь по кривой АВ.

Участок изотермы ED (см. рис. 2.24) описывает перегретый пар. Этот участок можно обнаружить экспериментально, если пар очистить от центров конденсации. Участки изотерм АВ и ED (см. рис. 2.24) соответствуют неустойчивому состоянию системы, малейшее возмущение вызывает переход сАВиЕйш прямую АЕ. Участок изотермы BCD (см. рис. 2.24) экспериментально обнаружить не удалось.

По мере повышения температуры горизонтальные участки изотерм (линия конденсации АВ) (рис. 2.25) становятся все более короткими, при некоторой температуре линия конденсации исчезает, т. е. начиная с температуры состояние вещества становится однофазным; температуру Г„ называют критической. Это наибольшая температура, при которой газ может быть еще превращен в жидкость. На изотерме, соответствующей критической температуре, точки А и В сливаются в одну точку К, характеризующуюся такими координатами: VK - критический объем, рк - критическое давление.

В критической точке все три корня уравнения (2.108) должны совпадать. Из этого условия получают значения критических параметров:

Если на различных изотермах соединить все точки, при которых начинается процесс кипения, пунктирной линией (рис. 2.25), то эта линия разделит диаграмму р, V на три области. Справа и слева от этой линии вещество находится в однофазном состоянии, справа и выше изотермы Тк - газообразное, слева - жидкое, внутри очерченной области - двухфазовое состояние жидкость - пар.