Ионизирующее излучение

Это излучение, ĸᴏᴛᴏᴩᴏᴇ создается при реактивном распаде, ядерных превращений, торможении заря- женных частиц в веществе и образует при взаимодействии со средой ионоразличные знаки.

Ионизированные излучения делятся на

Корпускулярное

Волновое

К корпускулярному относятся:

Альфа излучение-это направленный поток ядер гелия, испускаемых при реактивном распаде некото- рых химических элементов; энергия альфа частиц лежит в пределах 3-9 Мэв. Длина пробега 1-12 см. с повышением плотности длина пробега падает.

Бета излучение-это поток протонов, позитронов, электронов. Масса несколько тысяч меньше альфа частиц, максимальная энергия -0,1-3,5 Мэв, длинна пробега 0,2-0,6м. Биологические ткани примерно 2см, ионизирующая способность достаточно низка, проникающая способность намного больше по- ток этих частиц задерживается фольгой.

Нейтронное излучение – поток электронейтральных частиц ядра.

Учитывая зависимость отэнергии актив.- медленные нейтроны (с энергией менее 1 В)

Нейтроны с промежуточной энергией (1-500 КЭВ)

Быстрые нейтроны (500кев-20мев)

Проникающая способность нейтронов зависит от их энергии. При этом она существенно больше, чем у альфа и бета частиц.

Нейтральное излучение обладает помимо этого вторичным излучением. Когда он сталкивается с ка- ким либо ядром или электроном, оказывая при этом сильно ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах легких элементов.

Фотонные

Гамма-излучения это э/м излучения с частотой 1*10 20 Гц,λ-1*10 -12 м, а так же обладает высокой энер- гией активации. Гамма излучения испускается при ядерных превращениях или взаимодействиях час- тиц. Относительно высокая энергия (до 3 Мэв), а так же малая λ, обуславливают высокую проникаю- щую способность гамма-излучений, однако оно обладает меньшей ионизирующей способностью, чем альфа и бета излучения.

Рентгеновские излучения - возникают в среде, окружающей источник бета излучений (рентгеновс- кие трубки, ускорители, электроны) и представляют из себясовокупность тормозного и характеристи- ческих излучений.

Характерестические излучения - это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома.

Тормозное излучение - фотонное излучение с непрерывным спектром, испускаемое при изменении кинœетической энергии заряженных частиц.

Ионизирующая способность у рентгеновского излучения примерно, как и у бета излучения, однако оно обладает гораздо большей проникающей способностью. Замедление рентгеновского и гамма из- лучений наиболее быстро происходит на тяжелых элементах (свинœец, желœезо)

Основные характеристики ионизирующих излучений

Воздействие излучений на вещество будет тем больше, чем больше распадов ядер происходит.

Для характеристики числа распадов вводится понятие активности (А) радиоактивного вещества, под которым понимают число самопроизвольных ядерных превращений dN в данном веществе за малый промежуток времени dt, делœенное на данный промежуток времени:Активностьпропорциональна числу ядер радионуклида: А =λN , где N -число ядер радионуклида; λ - постоянная распада, характери- зующая вероятность распада за единицу времени (доля общего числа атомов изотопа, распадающих- ся каждую секунду). Чем выше λ , тем быстрее происходит распад. Постоянная распада λ связана с пе- риодом полураспада соотношением . Для каждого радионуклида имеются свои значения λ и соответственно Т ½, ĸᴏᴛᴏᴩᴏᴇ могут составлять для разных изотопов от долей секунды до миллиар- дов лет. Единицей измерения активности является Кюри (Кu), соответствующая 3,7∙10 10 ядерных превращений в секунду. Такая активность соответствует активности 1г радия-226. В системе единиц СИ за единицу активности принято одно ядерное превращение в секунду (расп./с). Эта единица полу- чила название беккереля (Бк)-1 Бк=2,7∙10 -11 Кu (1 Кu=3,7∙10 10 Бк). Поверхностная активность характе- ризует активность, приходящуюся на единицу площади загрязненного объекта͵ ᴛ.ᴇ. Бк/м 2 . Объемная активность, или концентрация радионуклида, определяется в расчете на единицу объёма вещества и измеряется в Бк/м 3 . Удельная активность рассчитывается на единицу массы вещества - Бк/кᴦ. Радиа- ционное загрязнение местности, зданий, транспортных средств, оборудования и других объектов ха- рактеризуется поверхностной активностью; жидкости и воздуха - объёмной активностью; строитель- ных материалов, отходов производства, а также продуктов питания - удельной. Учитывая зависимость отвоз- можности применяемой дозиметрической аппаратуры радиационные загрязнения одного и того же объекта можно выразить различной активностью. Так, радиационное загрязнение грунта и воды из- меряют в единицах объёмной или удельной активности. Для определœения активности источников γ-излучения чаще всœего применяется своя единица активности - миллиграмм-эквивалент радия (мгэкв Ra). Активностью 1 мгэкв Ra обладает такое количество радионуклида, ĸᴏᴛᴏᴩᴏᴇ создает такую же мо- щность дозы, как и 1 мг Ra, заключенного в фильтр из платины толщиной 0,5мм (1 мгэкв Ra создает дозу γ- излучения в 8,4 рентген за 1 час на расстоянии 1см от источника). Испускаемые радиоактив- ным источником частицы образуют поток, измеряемый числом частиц в 1с. Число частиц, приходя- щихся на единицу поверхности (квадратный метр или квадратный сантиметр), представляет собой плотность потока частиц [част./(мин·м 2), част./(мин·см 2), част./(с·см 2)

Экспозиционная доза - отношения суммарного заряда всœех ионов одного знака, созданных в воздухе, когда всœе электроны и позитроны, освобождаются фотонами в элементарном объёме воздуха с мас- сой, полностью остаются в воздухе. Единица измерения Кл.

Для различных видов ионизированных излучений биологическая эффективность при одной и той же поглощаемой дозе оказывается различной. По этой причине для оценки биологической эффективности вво- дится понятие эквивалентная доза - поглощенная доза умноженная на соответствующий внешний ко- эффициент для данного вида излучения. Единица измерения Zв

H экв. =W×д

Эффективная доза-величина. Используемая как мера риска возникновения отдельных неблагоприят- ных последствий в организме человека или отдельных органов.

H – эквивалентная доза в органе/ткани.

Мощность доза – мощность поглощенной дозы (мощность экспозиционной дозы, мощность эквива- лентной дозы, мощность эффективной дозы за интервал времени dt.

По типу источников света производственное освещение делится на:

1. естественное (солнце)

2. искусственное (лампочки)

3. совмещенное

По конструктивному исполнению естественное освещение бывает:

1. боковое

2. верхнее

3. комбинированное

Естественное освещение сильно меняется в течение суток. Зависит от погодных условий и времени года.

Искусственное освещение бывает:

Рабочее - обязательно для всœех видов производственных помещений, служит для обеспечения нор- мальных условий работы, прохода людей, проезда транспорта.

Аварийное:

1. освещение безопасности

2. эвакуационное

Освещение безопасности: предусматривается в тех случаях, когда происходит отключение рабочего освещения и связан с этими нарушениями в обслуживании оборудования, могут вызвать:

1.взрыв, пожар отравление людей

2.долгое нарушение технологических процессов

3.нарушение работы таких объектов как: электростанция, узлы телœерадиосвязи, диспетчерские пунк- ты

4.нарушения детских, учебных заведений

Эвакуционные – применяются при:

1) в местах опасных для прохода людей

2) в проходах и на лестницах, служащих для эвакуации людей (более 50 чел.)

3) по основным проходам производственных помещений, в которой работает более 50 человек.

4) На лестничных клетках зданий более 6 этажей

5) В производственном помещении без естественного света

Охранное освещение – предусматривается вдоль границ территории охраняемых в ночное время

Дежурное освещение – освещение помещения вне рабочее время

Искуственное освещение по конструктивному исполнению должна быть двух типов

2. Комбинированное

Общее – то, ĸᴏᴛᴏᴩᴏᴇ распространяется на всœе пространство помещения.

Комбинированное – к общему добавляет местный источник освещения

Условия зрительного комфорта на рабочем месте

1)Уровень освещения на рабочем месте должен соответствовать характеру выполняемой работы.

2)Равномерное распределœение освещенности на рабочей поверхности и в пределах окружающего пространства

3)Отсутствие резких теней на рабочей поверхности

4)В поле зрения должны отсутствовать прямая и отраженная блескость???

5)Величина освещения должна быть постоянной во времени; пульсация освещения оказывает небла- гоприятное явление как на органы зрения так и на ЦНС

7)Следует выбирать необходимый спектральный состав света

8)Осветительная обстановка должна быть безвредна и безопасна в процессе эксплуатации.

Нормирование освещения

Непостоянство естественного освещения и его зависимость от погодных условий, вызывали необхо- димость в ведении в отвлеченной единицы, т.н. коэффициент естественного освещения (КЕО)

КЕО - отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения к одновременному значению наружной, горизонтальной освещенности, создавае- мой светом при открытом небосводе и выраженной в %

Нормирование параметров искусственного освещения производится согласно санитарным нормам и правилам (а именно нормируется тремя параметрами):

1.Освещенность рабочей поверхности Лк ()

F- световой поток

Sплощадь

2.Показатель ослепленности - критерий оценки слепящей осветительной действ. обстановки.

S-коэффициент ослепленности равный отношению порогового значений яркости при наличии/отсут- ствии источника света

3.Коэффициент пульсации освещения-критерий оценки относительной глубины колебания освещен- ности в результате изменения во времени.

В промышленности основным источником искусственного света являются два источника:

1 лампы накаливания

2 газоразрядные лампы

Источником света в лампах накаливания представляет вольфрамовая нить, которая легко фокусируе- тся линзами или рефлекторами. Οʜᴎ не зависят от условий окружающей среды, их можно непосред- ственно включить в электрическую цепь, дешевы и просты в изготовлении. Световой поток к концу срока службы снижается незначительно. При этом эти лампочки имеют недостатки:

1.Низкая экономичность (КПД 3-5 %)

2.Низкая световая отдача (7-20 Люм/Вт)

3.Одинаковый спектральный состав света (цвета ближе к желтым, преобладающие желтые/красные цвета спектра)

4.Нерациональное распределœение светового потока (то, что требуют для осветительной аппаратуры)

5.Малый срок службы(1000-3000)

Галогенные лампы накаливания – их принцип действия, как и у обычной лампы накаливания, ᴛ.ᴇ.

При этом в колбу закачен галогенный газ, который контролирует испарения вольфрама, что в свою очередь позволяет нагревать вольфрамовую нить до более высоких температур, тем самым получает- ся более естественный спектр света.

Газоразрядная лампа-излучение оптического спектра возникает в результате разряда газа в атмосфе- ре инœертных газов (паров металлов, смеси). По сравнению ламп накаливания имеют ряд преимущес- тв:

1. Более высокая световая отдача (до 40 Люм/Вт)

2. Более высокое КПД (до 7%)

3. Больший срок службы (до 12-15000 часов)

4. Относительно низкая яркость самого источника света

5. Спектр излучения должна быть отрегулирован за счёт использования различных люминофоров.

Недостатки:

1.Газоразрядные лампы в электрической цепи загораются и гаснут 100 раз в секунду (негативное ска- зание на ЦНС)

2.Утилизация газоразрядных ламп должна производится в соответствии с техническими условиями

3.Не бывают непосредственно включены в электрическую цепь, для их использования необходи- мо пуско-регулируемая аппаратура.

4.Для загорания каждой лампы требуется время (5-10 сек)

5.Световой поток к концу срока службы снижается

6.Применение большинства газоразрядных ламп невозможно при отрицательной температуре окру- жающей среды.

7.В большинстве газоразрядных ламп содержат ртуть.

Ионизирующее излучение - понятие и виды. Классификация и особенности категории "Ионизирующее излучение" 2017, 2018.

  • Ионизирующее излучение - это вид энергии, высвобождаемой атомами в форме электромагнитных волн или частиц.
  • Люди подвергаются воздействию природных источников ионизирующего излучения, таких как почва, вода, растения, и воздействию искусственных источников, таких как рентгеновское излучение и медицинские устройства.
  • Ионизирующее излучение имеет многочисленные полезные виды применения, в том числе в медицине, промышленности, сельском хозяйстве и в научных исследованиях.
  • По мере расширения использования ионизирующего излучения увеличивается и потенциал опасностей для здоровья, если оно используется или ограничивается ненадлежащим образом.
  • Острое воздействие на здоровье, такое как ожог кожи или острый лучевой синдром, может возникнуть, когда доза облучения превышает определенные уровни.
  • Низкие дозы ионизирующего излучения могут увеличить риск более долгосрочных последствий, таких как рак.

Что такое ионизирующее излучение?

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Источники излучения

Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие ионизирующего излучения

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население. Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.

Последствия ионизирующего излучения для здоровья

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).

Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.

Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

Деятельность ВОЗ

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся "установления норм и стандартов, содействия в их соблюдении и соответствующего контроля" ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

Ионизирующим называется излучение, которое, проходя через среду, вызывает ионизацию или возбуждение молекул среды. Ионизирующее излучение, так же как и электромагнитное, не воспринимается органами чувств человека. Поэтому оно особенно опасно, так как человек не знает, что он подвергается его воздействию. Ионизирующее излучение иначе называют радиацией.

Радиация — это поток частиц (альфа-частиц, бета-частиц, нейтронов) или электромагнитной энергии очень высоких частот (гамма- или рентгеновские лучи).

Загрязнение производственной среды веществами, являющимися источниками ионизирующего излучения, называется радиоактивным загрязнением.

Радиоактивное загрязнение — это форма физического (энергетического) загрязнения, связанного с превышением естественного уровня содержания радиоактивных веществ в среде в результате деятельности человека.

Вещества состоят из мельчайших частиц химических элементов — атомов. Атом делим и имеет сложное строение. В центре атома химического элемента находится материальная частица, называемая атомным ядром, вокруг которой вращаются электроны. Большинство атомов химических элементов обладают большой устойчивостью, т. е. стабильностью. Однако у ряда известных в природе элементов ядра самопроизвольно распадаются. Такие элементы называются радионуклидами. Один и тот же элемент может иметь несколько радионуклидов. В этом случае их называют радиоизотопами химического элемента. Самопроизвольный распад радионуклидов сопровождается радиоактивным излучением.

Самопроизвольный распад ядер некоторых химических элементов (радионуклидов) называется радиоактивностью.

Радиоактивное излучение бывает различного вида: потоки частиц с высокой энергией, электромагнитная волна с частотой более 1,5 .10 17 Гц.

Испускаемые частицы бывают различных видов, но чаще всего испускаются альфа-частицы (α-излучение) и бета-частицы (β-излучение). Альфа-частица тяжелая и обладает высокой энергией, это ядро атома гелия. Бета-частица примерно в 7336 раз легче альфа-частицы, но может обладать также высокой энергией. Бета-излучение — это потоки электронов или позитронов.

Радиоактивное электромагнитное излучение (его также называют фотонным излучением) в зависимости от частоты волны бывает рентгеновским (1,5 . 10 17 ...5 . 10 19 Гц) и гамма-излучением (более 5 . 10 19 Гц). Естественное излучение бывает только гамма-излучением. Рентгеновское излучение искусственное и возникает в электронно-лучевых трубках при напряжениях в десятки и сотни тысяч вольт.

Радионуклиды, испуская частицы, превращаются в другие радионуклиды и химические элементы. Радионуклиды распадаются с различной скоростью. Скорость распада радионуклидов называют активностью . Единицей измерения активности является количество распадов в единицу времени. Один распад в секунду носит специальное название беккерель (Бк). Часто для измерения активности используется другая единица — кюри (Ku), 1 Ku = 37 .10 9 Бк. Одним из первых подробно изученных радионуклидов был радий-226. Его изучили впервые супруги Кюри, в честь которых и названа единица измерения активности. Количество распадов в секунду, происходящих в 1 г радия-226 (активность) равна 1 Ku.

Время, в течение которого распадается половина радионуклида, называется периодом полураспада (Т 1/2). Каждый радионуклид имеет свой период полураспада. Диапазон изменения Т 1/2 для различных радионуклидов очень широк. Он изменяется от секунд до миллиардов лет. Например, наиболее известный естественный радионуклид уран-238 имеет период полураспада около 4,5 миллиардов лет.

При распаде уменьшается количество радионуклида и уменьшается его активность. Закономерность, по которой снижается активность, подчиняется закону радиоактивного распада:

где А 0 — начальная активность, А — активность через период времени t .

Виды ионизирующих излучений

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы-ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа-частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани — нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц — 1800 см, а в живых тканях — 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа-частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма- квантов (гамма-излучение): при упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов в значительной степени зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма-излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения. Тормозное излучение — фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц; характеристическое излучение — это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Источники ионизирующего излучения

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ.

Кроме естественного облучения человек подвержен облучению и из других источников, например: при производстве рентгеновских снимков черепа — 0,8-6 Р; позвоночника — 1,6-14,7 Р; легких (флюорография) — 0,2-0,5 Р: грудной клетки при рентгеноскопии — 4,7- 19,5 Р; желудочно-кишечного тракта при рентгеноскопии — 12-82 Р: зубов — 3-5 Р.

Однократное облучение в 25-50 бэр приводит к незначительным скоропроходяшим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но без летального исхода. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, при этом летальный исход возможен в 50% случаев. Летальный исход в 100% случаев наступает при дозах 550- 700 бэр. В настоящее время существует ряд противолучевых препаратов. ослабляющих действие излучения.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы лучевой болезни являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета.

Степень зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы — опухоли печени, изотопы цезия, рубидия — опухоли мягких тканей.

Искусственные источники радиации

Кроме облучения от естественных источников радиации, которые были и есть всегда и везде, в XX веке появились и дополнительные источники излучения, связанные с деятельностью человека.

Прежде всего — это использование рентгеновского излучения и гамма-излучения в медицине при диагностике и лечении больных. , получаемые при соответствующих процедурах, могут быть очень большими, особенно при лечении злокачественных опухолей лучевой терапией, когда непосредственно в зоне опухоли они могут достигать 1000 бэр и более. При рентгенологических обследованиях доза зависит от времени обследования и органа, который диагностируется, и может изменяться в широких пределах — от нескольких бэр при снимке зуба до десятков бэр — при обследовании желудочно-кишечного тракта и легких. Флюрографические снимки дают минимальную дозу, и отказываться от профилактических ежегодных флюорографических обследований ни в коем случае не следует. Средняя доза, получаемая людьми от медицинских исследований, составляет 0,15 бэр в год.

Во второй половине XX века люди стали активно использовать радиацию в мирных целях. Различные радиоизотопы используют в научных исследованиях, при диагностике технических объектов, в контрольно-измерительной аппаратуре и т. д. И наконец — ядерная энергетика. Ядерные энергетические установки используют на атомных электрических станциях (АЭС), ледоколах, кораблях, подводных лодках. В настоящее время только на атомных электрических станциях работают свыше 400 ядерных реакторов общей электрической мощностью свыше 300 млн кВт. Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ).

ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты вечного захоронения радиоактивных отходов (могильники). На всех этапах ЯТЦ радиоактивные вещества в большей или меньшей степени воздействуют на обслуживающий персонал, на всех этапах могут происходить выбросы (нормальные или аварийные) радионуклидов в окружающую среду и создавать дополнительную дозу на население, особенно проживающее в районе предприятий ЯТЦ.

Откуда появляются радионуклиды при нормальной работе АЭС? Радиация внутри ядерного реактора огромна. Осколки деления топлива, различные элементарные частицы могут проникать через защитные оболочки, микротрещины и попадать в теплоноситель и воздух. Целый ряд технологических операций при производстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Выбросы в атмосферу осуществляются через высокую трубу.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее по близости население.

Наибольшую опасность с точки зрения радиационной безопасности представляют заводы по переработки отработанного ядерного горючего, которое обладает очень высокой активностью. На этих предприятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

Очень сложна проблема борьбы с радиоактивными отходами, которые являются весьма значимыми источниками радиоактивного загрязнения биосферы.

Однако сложные и дорогостоящие от радиации на предприятиях ЯТЦ дают возможность обеспечить защиту человека и окружающей среды до очень малых величин, существенно меньших существующего техногенного фона. Другая ситуация имеет место при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масштаба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к выбросу в окружающую среду лишь 5 % всего топлива. В результате в окружающую среду было выброшено радионуклидов с общей активностью 50 млн Ки. Этот выброс привел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости массового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

Ионизирующее излучение – вид радиации, которая у всех ассоциируется исключительно со взрывами атомных бомб и авариями на АЭС.

Однако на деле ионизирующее излучение окружает человека и представляет собой естественный радиационный фон: оно образуется в бытовых приборах, на электрических вышках и т.д. При воздействии с источниками происходит облучение человека данным излучением.

Стоит ли бояться серьезных последствий – лучевой болезни или поражения органов?

Сила действия излучения зависит от продолжительности контакта с источником и его радиоактивности. Бытовые приборы, создающие незначительный «шум», не опасны для человека.

Но некоторые типы источников могут нанести серьезный вред организму. Чтобы предотвратить негативное воздействие, нужно знать базовую информацию: что такое ионизирующее излучение и откуда оно исходит, а также как влияет на человека.

Ионизирующее излучение возникает при распаде радиоактивных изотопов.

Таких изотопов множество, они используются в электронике, атомной промышленности, добыче энергии:

  1. уран-238;
  2. торий-234;
  3. уран-235 и т.д.

Изотопы радиоактивного характера естественным образом распадаются с течением времени. Скорость распада зависит от вида изотопа и исчисляется в периоде полураспада.

По истечению определенного срока времени (у одних элементов этом могут быть несколько секунд, у других – сотни лет) количество радиоактивных атомов снижается ровно вдвое.

Энергия, которая высвобождается при распаде и уничтожении ядер, высвобождается в виде ионизирующего излучения. Оно проникает в различные структуры, выбивая из них ионы.

Ионизирующие волны основаны на гамма-излучении, измеряются в гамма-квантах. Во время передачи энергии не выделяются никакие частицы: атомы, молекулы, нейтроны, протоны, электроны или ядра. Воздействие ионизирующего излучения чисто волновое.

Проникающая способность излучения

Все виды разнятся по проникающей способности, то есть способность быстро преодолевать расстояния и проходить сквозь различные физические преграды.

Наименьшим показателем отличается альфа-излучение, а в основе ионизирующего излучения лежат гамма-лучи – самые проникающие из трех типов волн. При этом альфа-излучение оказывает самое отрицательное действие.

Что отличает гамма-излучение?

Оно опасно из-за следующих характеристик:

  • распространяется со скоростью света;
  • проходит через мягкие ткани, дерево, бумагу, гипсокартон;
  • останавливается только толстым слоем бетона и металлическим листом.

Для задержки волн, которыми распространяется данное излучение, на АЭС ставят специальные коробы. Благодаря им радиации не может ионизировать живые организмы, то есть нарушать молекулярную структуру людей.

Снаружи коробы состоят из толстого бетона, внутренняя часть обита листом чистого свинца. Свинец и бетон отражают лучи или задерживают их в своей структуре, не позволяя распространиться и нанести вред живому окружению.

Виды источников радиации

Мнение, что радиация возникает только в результате жизнедеятельности человека, ошибочно. Слабый радиационный фон есть почти у всех живых объектов и у самой планеты соответственно. Поэтому избежать ионизирующего излучения очень сложно.

На основе природы возникновения все источники делятся на природные и антропогенные. Наиболее опасны антропогенные, такие, как выброс отходов в атмосферу и водоемы, аварийная ситуация или действие электроприбора.

Опасность последнего источника спорна: считается, что небольшие излучающие устройства не создают серьезной угрозы для человека.

Действие индивидуально: кто-то может почувствовать ухудшение самочувствия на фоне слабого излучения, другой же индивид окажется абсолютно не подвержен естественному фону.

Природные источники радиации

Основную опасность для человека представляют минеральные породы. В их полостях скапливается наибольшее количество незаметного для человеческих рецепторов радиоактивного газа – радона.

Он естественным образом выделяется из земной коры и плохо регистрируется проверочными приборами. При поставке строительных материалов возможен контакт с радиоактивными породами, и как результат – процесс ионизации организма.

Опасаться следует:

  1. гранита;
  2. пемзы;
  3. мрамора;
  4. фосфогипса;
  5. глинозема.

Это наиболее пористые материалы, которые лучше всего задерживают в себе радон. Данный газ выделяется из строительных материалов или грунта.

Он легче воздуха, поэтому поднимается на большую высоту. Если вместо открытого неба над землей обнаружено препятствие (навес, крыша помещения), газ будет скапливаться.

Большая насыщенность воздуха его элементами приводит к облучению людей, компенсировать которое можно только выведением радона из жилых зон.

Чтобы избавиться от радона, требуется начать простое проветривание. Нужно стараться не вдыхать воздух в том помещении, где произошло заражение.

Регистрация возникновения скопившегося радона осуществляется только при помощи специализированных симптомов. Без них сделать вывод о скоплении радона можно только на основе не специфичных реакций человеческого организма (головная боль, тошнота, рвота, головокружение, потемнение в глазах, слабость и жжение).

При обнаружении радона вызывается бригада МЧС, которая устраняет радиацию и проверяет эффективность проведенных процедур.

Источники антропогенного происхождения

Другое название созданных человеком источников – техногенные. Основной очаг излучения – АЭС, расположенные по всему миру. Нахождение в зонах станций без защитной одежды влечет за собой начало серьезных заболеваний и летальный исход.

На расстоянии нескольких километров от АЭС риск сводится к нулю. При правильной изоляции все ионизирующие излучения остаются внутри станции, и можно находиться в непосредственной близости от рабочей зоны, при этом не получая никакой дозы облучения.

Во всех сферах жизнедеятельности можно столкнуться с источником излучения, даже не проживая в городе близ АЭС.

Искусственная ионизирующая радиация повсеместно используется в различных отраслях:

  • медицине;
  • промышленности;
  • сельском хозяйстве;
  • наукоемких отраслях.

Однако получить облучение от аппаратов, которые изготавливаются для данных отраслей, невозможно.

Единственное, что допустимо – минимальное проникновение ионных волн, которое не наносит вреда при малой продолжительности воздействия.

Радиоактивные осадки

Серьезная проблема современности, связанная с недавними трагедиями на АЭС – распространение радиоактивных дождей. Выбросы в атмосферу радиации заканчиваются накоплением изотопов в атмосферной жидкости – облаках. При переизбытке жидкости начинаются осадки, которые представляют серьезную угрозу для сельскохозяйственных культур и человека.

Жидкость впитывается в земли сельскохозяйственных угодий, где произрастает рис, чай, кукуруза, тростник. Данные культуры характерны для восточной части планеты, где наиболее актуальна проблема радиоактивных дождей.

Ионное излучение оказывает меньшее воздействие на другие части света, потому что осадки не доходят до Европы и островных государств в области Великобритании. Однако в США и Австралии дожди иногда проявляются радиационные свойства, поэтому при покупке овощей и фруктов оттуда нужно проявлять осторожность.

Радиоактивные осадки могут выпадать над водоемами, и тогда жидкость по каналам водоочистки и водопроводным системам может попасть в жилые дома. Очистные сооружения не обладают достаточной для снижения радиации аппаратурой. Всегда есть риск, что принимаемая вода – ионная.

Как обезопасить себя от радиации

Прибор, который измеряет, есть ли в фоне продукта ионные излучения, находится в свободном доступе. Его можно приобрести за небольшие деньги и использовать для проверки покупок. Название проверочного устройства – дозиметр.

Вряд ли домохозяйка будет проверять покупки прямо в магазине. Обычно мешает стеснение перед посторонними. Но хотя бы дома те продукты, что поступили из подверженных радиоактивным дождям зон, нужно проверять. Достаточно поднести счетчик к предмету, и он покажет уровень испускания опасных волн.

Влияние ионизирующего излучения на человеческий организм

Научно доказано, что радиация оказывает на человека отрицательное действие. Это было выяснено и на реальном опыте: к сожалению, аварии на Чернобыльской АЭС, в Хиросиме и т.д. доказали биологическую и излучения.

Влияние радиации основано на полученной «дозе» — количестве переданной энергии. Радионуклид (испускающий волны элементы) может оказывать влияние как изнутри, так и снаружи организма.

Полученная доза измеряется в условных единицах – Греях. Нужно учитывать, что доза может быть равной, а вот влияние радиации – разным. Это связано с тем, что различные излучения вызывают разные по силе реакции (самая выраженная у альфа-частиц).

Также на силу воздействия влияет и то, на какую часть организма пришлось попадание волн. Наиболее подвержены структурным изменениям половые органы и легкие, меньше – щитовидная железа.

Результат биохимического воздействия

Радиация влияет на структуру клеток организма, вызывая биохимические изменения: нарушения в циркуляции химических веществ и в функциях организма. Влияние волн проявляется постепенно, а не сразу после облучения.

Если человек попал под допустимую дозу (150 бэр), то отрицательные эффекты не будут выражены. При большем облучении ионизационный эффект увеличивается.

Естественное излучение равно примерно в 44 бэр в год, максимум – 175. Максимальное число лишь немного выходит за рамки нормы и не вызывает отрицательных изменений в организме, кроме головных болей или слабой тошноты у гиперчувствительных людей.

Естественное излучение складывается на основе радиационного фона Земли, употребления зараженных продуктов, использования техники.

Если доля превышена, развиваются следующие заболевания:

  1. генетические изменения организма;
  2. нарушения половой функции;
  3. раковые образования мозга;
  4. дисфункции щитовидной железы;
  5. рак легких и дыхательной системы;
  6. лучевая болезнь.

Лучевая болезнь является крайней стадией всех связанных с радионуклидами заболеваний и проявляется лишь у тех, кто попал в зону аварии.

В повседневной жизни человека ионизирующие излучения встречаются постоянно. Мы их не ощущаем, но не можем отрицать их воздействия на живую и неживую природу. Не так давно люди научились использовать их как во благо, так и в качестве оружия массового истребления. При правильном использовании эти излучения способны изменить жизнь человечества в лучшую сторону.

Виды ионизирующих излучений

Чтобы разобраться с особенностями влияния на живые и неживые организмы, нужно выяснить, какими они бывают. Также важно знать их природу.

Ионизирующее излучение - это особенные волны, которые способны проникать через вещества и ткани, вызывая ионизацию атомов. Существует несколько его видов: альфа-излучение, бета-излучение, гамма-излучение. Все они имеют разный заряд и способности действовать на живые организмы.

Альфа-излучение самое заряженное из всех видов. Оно обладает огромной энергией, способной даже в малых дозах вызывать лучевую болезнь. Но при непосредственном облучении проникает только в верхние слои кожи человека. От альфа-лучей защищает даже тонкий лист бумаги. В то же время, попадая в организм с едой или со вдохом, источники этого излучения довольно быстро становятся причиной смерти.

Бета-лучи несут немного меньший заряд. Они способны проникать глубоко в организм. При длительном облучении становятся причиной смерти человека. Меньшие дозы вызывают изменение в клеточной структуре. Защитой может послужить тонкий лист алюминия. Излучение изнутри организма также смертельно.

Самым опасным считается гамма-излучение. Оно проникает насквозь организма. В больших дозах вызывает радиационный ожог, лучевую болезнь, смерть. Защитой от него может быть только свинец и толстый слой бетона.

Особенной разновидностью гамма-излучения считаются рентгеновские лучи, которые генерируются в рентгеновской трубке.

История исследований

Впервые об ионизирующих излучениях мир узнал 28 декабря 1895 года. Именно в этот день Вильгельм К. Рентген объявил, что открыл особый вид лучей, способных проходить через разные материалы и человеческий организм. С этого момента многие врачи и ученые начали активно работать с этим явлением.

Длительное время никто не знал о его влиянии на человеческий организм. Поэтому в истории известно немало случаев гибели от чрезмерного облучения.

Супруги Кюри подробно изучили источники и свойства, которые имеет ионизирующее излучение. Это дало возможность использовать его с максимальной пользой, избегая негативных последствий.

Естественные и искусственные источники излучений

Природа создала разнообразные источники ионизирующего излучения. В первую очередь это радиация солнечных лучей и космоса. Большая ее часть поглощается озоновым шаром, который находится высоко над нашей планетой. Но некоторая их часть достигает поверхности Земли.

На самой Земле, а точнее в ее глубинах, есть некоторые вещества, продуцирующие радиацию. Среди них - изотопы урана, стронция, радона, цезия и другие.

Искусственные источники ионизирующих излучений созданы человеком для разнообразных исследований и производства. При этом сила излучений может в разы превышать естественные показатели.

Даже в условиях защиты и соблюдения мер безопасности люди получают опасные для здоровья дозы облучения.

Единицы измерения и дозы

Ионизирующее излучение принято соотносить с его взаимодействием с человеческим организмом. Поэтому все единицы измерения так или иначе связаны со способностью человека поглощать и накапливать энергию ионизации.

В системе СИ дозы ионизирующего излучения измеряются единицей, именуемой грей (Гр). Она показывает количество энергии на единицу облучаемого вещества. Один Гр равен одному Дж/кг. Но для удобства чаще используется внесистемная единица рад. Она равна 100 Гр.

Радиационный фон на местности измеряется экспозиционными дозами. Одна доза равна Кл/кг. Эта единица используется в системе СИ. Внесистемная единица, соответствующая ей, называется рентген (Р). Чтобы получить поглощенную дозу 1 рад, нужно поддаться облучению экспозиционной дозой около 1 Р.

Поскольку разные виды ионизирующих излучений имеют разный заряд энергии, его измерение принято сравнивать с биологическим влиянием. В системе СИ единицей такого эквивалента выступает зиверт (Зв). Внесистемный его аналог - бэр.

Чем сильнее и дольше излучение, тем больше энергии поглощается организмом, тем опаснее его влияние. Чтобы узнать допустимое время пребывания человека в радиационном загрязнении, используются специальные приборы - дозиметры, осуществляющие измерение ионизирующего излучения. Это бывают как приборы индивидуального пользования, так и большие промышленные установки.

Влияние на организм

Вопреки бытующему мнению, не всегда опасно и смертельно любое ионизирующее излучение. Это можно увидеть на примере с ультрафиолетовыми лучами. В малых дозах они стимулируют генерацию витамина D в человеческом организме, регенерацию клеток и увеличение пигмента меланина, дающего красивый загар. Но длительное облучение вызывает сильные ожоги и может стать причиной развития рака кожи.

В последние годы активно изучается воздействие ионизирующего излучения на человеческий организм и его практическое применение.

В небольших дозах излучения не причиняют никакого вреда организму. До 200 милирентген могут снизить количество белых кровяных клеток. Симптомом такого облучения будут тошнота и головокружение. Около 10% людей гибнут, получив такую дозу.

Большие дозы вызывают расстройство пищеварительной системы, выпадение волос, ожоги кожи, изменения клеточной структуры организма, развитие раковых клеток и смерть.

Лучевая болезнь

Длительное действие ионизирующего излучения на организм и получение им большой дозы облучения могут стать причиной лучевой болезни. Больше половины случаев этого заболевания ведут к летальному исходу. Остальные становятся причиной целого ряда генетических и соматических заболеваний.

На генетическом уровне происходят мутации в половых клетках. Их изменения становятся очевидными в следующих поколениях.

Соматические болезни выражаются канцерогенезом, необратимыми изменениями в разных органах. Лечение этих заболеваний длительное и довольно трудное.

Лечение лучевых поражений

В результате патогенного воздействия радиации на организм возникают различные поражения органов человека. В зависимости от дозы облучения проводят разные методы терапии.

В первую очередь больного помещают в стерильную палату, чтобы избежать возможности инфицирования открытых пораженных участков кожи. Далее проводят специальные процедуры, способствующие скорому выведению из организма радионуклидов.

При сильных поражениях может понадобиться пересадка костного мозга. От радиации он теряет способность воспроизводить красные кровяные клетки.

Но в большинстве случаев лечение легких поражений сводится к обезболиванию пораженных участков, стимулированию регенерации клеток. Большое внимание уделяется реабилитации.

Влияние ионизирующего излучения на старение и рак

В связи с влиянием ионизирующих лучей на организм человека ученые проводили разные эксперименты, доказывающие зависимость процессов старения и канцерогенеза от дозы облучения.

В лабораторных условиях подвергались облучениям группы клеточных культур. Вследствие этого удалось доказать, что даже незначительное облучение способствует ускорению старения клеток. При этом чем старше культура, тем больше она подвержена этому процессу.

Длительное же облучение приводит к гибели клеток или аномальному и быстрому их делению и росту. Этот факт свидетельствует о том, что ионизирующее излучение на организм человека оказывает канцерогенное действие.

В то же время воздействие волн на пораженные раковые клетки приводило к их полной гибели или остановке процессов их деления. Это открытие помогло разработать методику лечения раковых опухолей человека.

Практическое применение радиации

Впервые излучения начали использовать в медицинской практике. С помощью рентгеновских лучей врачам удалось заглянуть внутрь человеческого организма. При этом вреда ему практически не наносилось.

Далее с помощью облучения начали лечить раковые заболевания. В большинстве случаев этот метод оказывает положительное влияние, невзирая на то что весь организм подвергается сильному воздействию излучения, влекущему за собой ряд симптомов лучевой болезни.

Кроме медицины, ионизирующие лучи используются и в других отраслях. Геодезисты с помощью радиации могут изучить особенности строения земной коры на ее отдельных участках.

Способность некоторых ископаемых выделять большое количество энергии человечество научилось использовать в собственных целях.

Атомная энергетика

Именно за атомной энергией будущее всего населения Земли. Атомные электростанции выступают источниками сравнительно недорогого электричества. При условии их правильной эксплуатации такие электростанции намного безопаснее, чем ТЭС и ГЭС. От атомных электростанций намного меньше загрязнения окружающей среды как лишним теплом, так и отходами производства.

В то же время на основании атомной энергии ученые разработали оружие массового поражения. На данный момент на планете атомных бомб столько, что запуск незначительного их количества может стать причиной ядерной зимы, вследствие которой погибнут практически все живые организмы, населяющие ее.

Средства и способы защиты

Использование в повседневной жизни радиации требует серьезных мер предосторожности. Защита от ионизирующих излучений делится на четыре типа: временем, расстоянием, количеством и экранированием источников.

Даже в среде с сильным радиационным фоном человек может находиться некоторое время без вреда для своего здоровья. Именно этот момент определяет защиту временем.

Чем больше расстояние до источника излучения, тем меньше доза поглощаемой энергии. Поэтому стоит избегать близкого контакта с местами, где есть ионизирующее излучение. Это гарантированно убережет от нежелательных последствий.

Если есть возможность использовать источники с минимальным излучением, им в первую очередь отдается предпочтение. Это и есть защита количеством.

Экранирование же означает создание барьеров, через которые не проникают вредоносные лучи. Примером тому служат свинцовые ширмы в рентгеновских кабинетах.

Бытовая защита

В случае объявления радиационной катастрофы следует немедленно закрыть все окна и двери, постараться запастись водой из закрытых источников. Еда должна быть только консервированной. При перемещении на открытой местности максимально закрыть тело одеждой, а лицо - респиратором или влажной марлей. Стараться не заносить в дом верхнюю одежду и обувь.

Необходимо также приготовиться к возможной эвакуации: собрать документы, запас одежды, воды и еды на 2-3 суток.

Ионизирующие излучения как экологический фактор

На планете Земля довольно много загрязненных радиацией участков. Причиной тому служат как естественные процессы, так и техногенные катастрофы. Самые известные из них - авария на ЧАЭС и атомные бомбы над городами Хиросима и Нагасаки.

В таких местах человек не может находиться без вреда для собственного здоровья. В то же время не всегда есть возможность узнать заранее о радиационном загрязнении. Порой даже некритический радиационный фон может стать причиной катастрофы.

Причиной тому служит способность живых организмов поглощать и накапливать радиацию. При этом они сами превращаются в источники ионизирующего излучения. Всем известные «черные» анекдоты о чернобыльских грибах основаны именно на этом свойстве.

В таких случаях защита от ионизирующих излучений сводится к тому, что все потребительские продукты поддаются тщательному радиологическому изучению. В то же время на стихийных рынках всегда есть шанс купить именно знаменитые «чернобыльские грибы». Поэтому стоит воздержаться от покупок у непроверенных продавцов.

Человеческий организм склонен накапливать опасные вещества, вследствие чего происходит постепенное отравление изнутри. Неизвестно, когда именно дадут о себе знать последствия влияния этих ядов: через день, год или через поколение.