Факторы, обеспечивающие мышечное сокращение:


Сродство комплекса «миозин-АТФ» к актину очень низкое;


Сродство комплекса «миозин-АДФ» к актину очень высокое;


актин ускоряет отщепление АДФ и Ф от миозина, что сопровождается конформационной перестройкой (поворот головки миозина).


Стадии мышечного сокращения:


Фиксация АТФ на головке миозина;


Гидролиз АТФ. Продукты гидролиза (АДФ и Ф) остаются фиксированными, а выделившаяся энергия аккумулируется в головке. Мышца готова к сокращению;


Образование прочного комплекса «актин-миозин», разрушающегося только при сорбции новой молекулы АТФ;


Конформационные изменения молекулы миозина, в результате которых происходит поворот головки миозина. Освобождение продуктов реакции (АДФ и Ф) из активного центра головки миозина.


Белки - регуляторы мышечного сокращения:


1) тропомиозин - фибриллярный белок, имеет вид a-спирали. В тонкой нити на 1 молекулу тропомиозина приходится 7 молекул G-актина. Располагается в желобке между 2 спиралями G-актина. Соединяется «конец в конец», цепочка непрерывная. Молекула тропомиозина закрывает активные центры связывания актина на поверхности глобул актина;


2) тропонин - глобулярный белок, состоящий из 3 субъединиц: тропонина «Т», тропонина «С» и тропонина «I». Располагается на тропомиозине с равными промежутками, длина которых равна длине молекулы тропомиозина. Тропонин Т (ТнТ) - отвечает за связывание тропонина с тропомиозином, через тропонин «Т» конформационные изменения тропонина передаются на тропомиозин. Тропонин С (ТнС) - Ca2+- связывающая субъединица, содержит 4 участка для связывания кальция, по строению похожа на белок кальмодулин. Тропонин I (ТнI) - ингибиторная субъединица - ненастоящий ингибитор, создающий лишь пространственное препятствие, мешающее взаимодействию актина и миозина в момент, когда тропонин «С» не связан с Са2+.


Регуляция сокращения и расслабления мышц в живой клетке:


Мышечное сокращение начинается с нервного импульса. Под воздействием ацетилхолина развивается возбуждение клеточной мембраны и резко повышается ее проницаемость для Са2+;


Са2+ поступает в цитоплазму мышечной клетки (саркоплазму) из депо - цистерн цитоплазматического ретикулума. Концентрация Са2+ в саркоплазме мгновенно увеличивается;


Кальций связывается с тропонином «С». Возникают конформационные изменения молекулы тропонина, в результате устраняется пространственное препятствие в виде тропонина «I», так как молекула тропомиозина оттягивается в сторону и открывает на поверхности актина миозин-связывающие центры. Дальше мышечное сокращение идет по схеме.


  • Механизм мышечного сокращения .
    Регуляция сокращения и расслабления мышц в живой клетке: - мышечное сокращение начинается с нервного импульса.


  • Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .
    Структура поперечно-полосатой мышечной ткани. Поперечно-полосатая мускулатура состоит из чередующихся толстых и тонких нитей.


  • Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .
    - транспорт гормонов и других метаболитов; - защита от чужеродных агентов; - регуляция температуры тела путем перераспределения тепла в организме.


  • В условиях интенсивной мышечной
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • В условиях интенсивной мышечной работы кислород не успевает поступать в клетку. При этом распад угл... подробнее ».
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • В условиях интенсивной мышечной работы кислород не успевает поступать в клетку. При этом распад угл... подробнее ».
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • Механизм сокращений и расслаблений скелетных мышц называется мышечным насосом.


  • Активное сокращение мышцы в изометрическом и изотоническом режимах. Изометрические условия– длина мышцы фиксирована, так что когда мышца сокращается в тех местах, где она
    к ее первоначальной длине.


  • Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом.


  • Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом.

Найдено похожих страниц:10


Новосибирский государственный педагогический университет

Реферат по предмету

«Биохимия»

«Биохимия мышечного сокращения»

Выполнил: студент 3 курса ЕГФ

отделения «Валеология», гр. 1А

Литвиченко Е.М.

Проверил: Сайкович Е.Г.

г. Новосибирск 2000 г.

Интерес биохимии к процессам происходящим в сокращающихся мышцах основан не только на выяснении механизмов мышечных болезней, но и что может быть даже более важным – это раскрытие механизма превращения электрической энергии в механическую, минуя сложные механизмы тяг и передач.


Для того, чтобы понять механизм и биохимические процессы происходящие в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна. Структурной единицей мышечного волокна являются Миофибриллы – особым образом организованные пучки белков, располагающиеся вдоль клетки. Миофибриллы в свою очередь построены из белковых нитей (филаментов) двух типов – толстых и тонких. Основным белком толстых нитей является миозин , а тонких – актин . Миозиновые и актиновые нити – главный компонент всех сократительных систем в организме. Электронно-микроскопическое изучение показало строго упорядоченное расположение миозиновых и актиновых нитей в миофибрилле. Функциональной единицей миофибриллы является саркомер – участок миофибриллы между двумя Z-пластинками. Саркомер включает в себя пучок миозиновых нитей, серединой сцепленных по так называемой М-пластине, и проходящих между ними волокон актиновых нитей, которые в свою очередь прикреплены к Z-пластинам.

Сокращение происходит путем скольжения тонких актиновых и толстых миозиновых нитей навстречу друг другу или вдвигания актиновых нитей между миозиновыми в направлении М-линии. Максимальное укорочение достигается тогда, когда Z-пластинки, к которым прикреплены актиновые нити, приближаются к концам миозиновых нитей. При сокращении саркомер укорачивается на 25-50 %.

Саркоплазма, вмещающая миофибриллы, пронизана между ними сетью цистерн и трубочек эндоплазматического ретикулума, а также системой поперечных трубочек, которые тесно контактируют с ним, но не сообщаются.

Строение миозиновых нитей.

Миозиновые нити образованы белком миозином, молекула которого содержит две идентичные тяжелые полипептидные цепи с молекулярной массой около 200 000 и четыре легкие цепи (около 20 000). Каждая тяжелая цепь на большей части своей длины имеет конформацию a-спирали, и обе тяжелые цепи скручены между собой, образуя часть молекулы в форме палочки. С противоположных концов каждой цепи присоединены по две легкие цепи, вместе с глобулярной формой этих концов цепи они образуют «головки» молекул. Палочкообразные концы молекул могут соединяться друг с другом продольно, образуя пучки, головки молекул при этом располагаются кнаружи от пучка по спирали. Кроме того, в области М-линии пучки соединяются между собой «хвост в хвост». Каждая миозиновая нить содержит около 400 молекул миозина.

Рис.1 Рис.2

Строение актиновых нитей.

В состав актиновых нитей входят белки актин, тропомиозин и тропонин. Основу составляют молекулы актина. Сам белок актин – глобулярный белок с молекулярной массой 43 000 и шарообразной формой молекулы. Нековалентно соединяясь, глобулярный актин образует фибриллярный актин, напоминая по форме две скрученные между собой нитки бус.


молекулы актина

молекулы тропонина молекулы тропомиозина

Другой белок, входящий в актиновые нити – тропомиозин – имеет форму палочек, он располагается вблизи желобков спиральной ленты фибриллярного актина, вдоль нее. Размер его в длину в 8 раз больше размера глобулярного актина, потому одна молекула тропомиозина контактирует сразу с семью молекулами актина и концами связаны друг с другом, образуя третью продольную спирально закрученную цепочку.

Третий белок актиновых нитей – тропонин – состоит из трех разных субъединиц и имеет глобулярную форму. Он нековалентно связан и с актином и тропомиозином таким образом, что на одну молекулу тропонина приходится одна молекула тропомиозина, кроме того одна из его субъединиц содержит Ca- связывающие центры. Тонкие актиновые нити прикреплены к Z-пластинам, тоже белковым структурам.

Механизм сокращения мышцы.

Сокращение мышц есть результат укорочения каждого саркомера, максимальное укорочение саркомера достигается тогда, когда Z-пластинки, к которым прикреплены актиновые нити, приближаются вплотную к концам миозиновых нитей.

В сокращении мышц у актиновых и миозиновых нитей свои роли: миозиновые нити содержат активный центр для гидролиза АТФ, устройство для превращения энергии АТФ в механическую энергию, устройство для сцепления с актиновыми нитями и устройства для восприятия регуляторных сигналов со стороны актиновых нитей, актиновые нити имеют механизм сцепления с миозиновыми нитями и механизм регуляции сокращения и расслабления.

Сокращение мышцы включается потенциалом действия нервного волокна, который через нервно-мышечный синапс при посредстве медиатора трансформируется в потенциал действия сарколеммы и трубочек Т-системы. Ответвления трубочек окружают каждую миофибриллу и контактируют с цистернами саркоплазматического ретикулума. В цистернах в значительной концентрации содержится Ca . Потенциал действия, поступающий по трубочкам, вызывает высвобождение ионов Ca 2+ из цистерн саркоплазматического ретикулума. Ионы Ca 2+ присоединяются к Сa-связывающей субъединице тропонина. В присутствии ионов Ca 2+ на мономерах актиновых нитей открываются центры связывания миозиновых головок, причем по всей системе тропонин – тропомиозин – актин. Как результат этих изменений – миозиновая головка присоединяется к ближайшему мономеру актина.

Головки миозина обладают высоким сродством к АТФ, так что в мышце большинство головок содержит связанный АТФ. Присоединение головки миозина к актину, активирует АТФ-азный центр, АТФ гидролизуется, АДФ и фосфат покидают активный центр, что приводит к изменению конформации миозина: возникает дополнительное напряжение, стремящееся уменьшить угол между головкой и хвостом молекулы миозина, т.е. наклонить головку в направлении М-линии. Поскольку миозиновая головка соединена с актиновой нитью, то, наклоняясь в сторону М-линии она смещает в этом же направлении и актиновую нить.

АДФ, высвобождаемые с множества головок проходят следующую трансформацию:

2 АДФ ® АТФ + АМФ

Освобожденные от АТФ головки снова притягивают к себе АТФ в связи с его высоким сродство, о чем уже упоминалось выше, присоединение АТФ уменьшает сродство миозиновой головки с актиновыми нитями и миозин возвращается в исходное состояние. Далее повторяется весь цикл с самого начала, но поскольку в предыдущем цикле актиновая нить за счет своего движения приблизила Z-пластинку, то та же самая головка миозина присоединяется уже к другому мономеру актина ближе к Z-пластинке.


Сотни миозиновых головок каждой миозиновой нити работают одновременно, втягивая таким образом актиновую нить.

Источники энергии мышечного сокращения.

Скелетная мышца, работающая с максимальной интенсивностью, потребляет в сотни раз больше энергии, чем покоящаяся, причем переход от состояния покоя к состоянию максимальной работы происходит за доли секунды. В связи с этим у мышц совсем по-другому построен механизм изменения скорости синтеза АТФ в очень широких пределах.

Как уже упоминалось при мышечном сокращении большое значение имеет процесс синтеза АТФ из АДФ, высвобождаемых из миозиновых головок. Это происходит при помощи, имеющегося в мышцах высокоэнергетического вещества креатинфосфата , которое образуется из креатина и АТФ при действии креатинкиназы :

C-NH 2 C-NH-PO 3 H 2

N-CH 3 +АТФ- N-CH 3 + АДФ

Креатин Креатинфосфат

Эта реакция легко обратима и идет анаэробно, что обеспечивает быстрое включение мышц в работу на ранних этапах. При продолжении нагрузки роль такого энергетического обеспечения снижается, а на его замену приходят гликогеновые механизмы обеспечения большим количеством АТФ.

Библиография:

Г. Дюга, К. Пенни «Биоорганическая химия», М., 1983

Д. Мецлер «Биохимия», М., 1980

А. Ленинджер «Основы биохимии», М., 1985

С труктура мышечного волокна и его сокращение.

Мышечное сокращение в живой системе это механохимический процесс. Современная наука считает его самой совершенной формой биоло­гической подвижности. Сокращение мышечного волокна биологические объекты «разработали» как способ перемещения в пространстве (что значительно расширило их жизненные возможности).

Мышечному сокращению предшествует фаза напряжения, которая является результатом работы, осуществляемой путем преобразования энергии химической в механическую напрямую и с хорошим КПД (30-50 %). Накопление потенциальной энергии в фазе напряжения приводит мышцу в состояние возможного, но еще не реализованного сокращения.

У животных и человека имеются (а человек считает, что уже и неплохо изучены) два основных типа мышц: поперечнополосатые и гладкие. Поперечнополосатые мышцы или скелетные прикреплены к костям (кроме поперечнополосатых волокон сердечной мышцы, отличающихся от скелетных мышц и по составу). Гладкие мышцы поддерживают ткани внутренних органов и кожу и образуют мускулатуру стенок кровеносных сосудов, а также кишечника.

В биохимии спорта изучают ске­летные мышцы , «конкретно отвечающие» за спортивный результат.

Мышца (как макро образование, принадлежащее макро объекту) состоит из отдельных мышечных волокон (микро образований). В мышце их тысячи, соответственно, мышечное усилие – величина интегральная, суммирующая сокращения множества отдельных волокон. Различают мышечные волокна трех типов: белые быстросокращающиеся, промежуточные и красные медленно сокращающиеся. Типы волокон различаются механиз­мом их энергетического обеспечения и управляются разными мотонейронами. Типы мышц различаются соотношением типов волокон.

Отдельное мышечное во­локно – нитевидное бес­клеточное образование – симпласт . На клетку симпласт «не похож»: имеет сильно вытянутую форму в длину от 0,1 до 2-3 см, в портняжной мышце до 12 см, и толщину – от 0,01 до 0,2 мм. Симпласт окружен оболоч­кой – сарколеммой, к поверхности которой подходят окон­чания нескольких двигательных нервов. Сарколемма – это двухслойная липопротеидная мембрана (толщиной 10 нм), укрепленная сетью коллагеновых волокон. При расслаблении после сокращения они возвращают симпласт в исходную форму (рис. 4).

Рис. 4. Отдельное мышечное волокно.

На наружной поверхности сарколеммы-мембраны всегда поддерживается электрический мембранный потенциал, даже в состоянии покоя он равен 90-100 мВ. Наличие потенциала является необходи­мым условием для управления мышечным волокном (как аккумулятор для авто). Потенциал создается за счет активного (значит с затратами энергии – АТФ) переноса веществ через мембрану и ее избирательной проницаемости (по принципу – «кого хочу – того и впущу, или выпущу»). Поэтому внутри симпласта некоторые ионы и молекулы накапливаются в большей концентрации, чем снаружи.

Сарколемма хорошо проницаема для ионов К + – они накап­ливаются внутри, а наружу выводятся ионы Nа + . Соответственно, концентрация ионов Nа + в межклеточной жидкости больше, чем концентрация ионов К + внутри симпласта. Смещение pH в кислую сторону (при образовании молочной кислоты, например) увеличивает проницаемость сарколеммы для высокомолекулярных веществ (жир­ных кислот, белков, полисахаридов), которые в обычном состоянии через нее не проходят. Легко проходят (диффундируют) через мембрану низкомолекулярные вещества (глюкоза, молоч­ная и пировиноградная кислоты, кетоновые тела, аминокислоты, короткие пептиды).

Внутреннее содержимое симпласта – саркоплазма – этоколлоидная белковая структура (по консистенции напоминает желе). Во взвешенном состоянии в ней находятся включения гликогена, жировые капли, в нее «встроены» различные субкле­точные частицы: ядра, митохондрии, миофибриллы, рибосомы и другие.

Сократительный «механизм» внутри симпласта – миофибриллы. Это тонкие(Ø 1 – 2 мкм) мышечные нити, длинные – почти равны длине мышечного волокна. Установлено, что в симпластах нетренированных мышц миофибриллы располагаются не упорядоченно, вдоль симпласта, но с разбросом и отклонениями, а в тренированных – миофибириллы ориентированы по продольной оси и еще сгруппированы в пучки как в канатах. (При прядении искусственных и синтетических волокон макромолекулы полимера сначала располагаются не строго вдоль волокна и их, как спортсменов, «упорно тренируют» – ориентируют правильно – по оси волокон, путем многократной перемотки: смотри длиннющие цеха на ЗИВе и «Химволокно»).

В световой микроскоп можно наблюдать, что миофибриллы действительно «поперечно полосатые». В них чередуются светлые и темные участки – диски. Темные диски А (анизотропные) белка содержат больше, чем светлые диски I (изотропные). Светлые диски пересечены мембранами Z (телофрагмами) и участок миофибриллы между двумя Z -мембранами называется саркомером . Миофибрилла состоит из 1000 – 1200 саркомеров (рис. 5).

Сокращение мышечного волокна в целом складывается из сокращений единичных саркомеров. Сокращаясь каждый отдельно,саркомерывсе вместе создают интегральное усилие и выполняют механическую работу по сокращению мышцы.

Дли­на саркомера меняется от 1,8 мкм в покое до 1,5 мкм при умеренном и до 1 мкм при полном сокращении. Диски саркомеров, темных и светлых, заключают в себе протофибриллы (миофиламенты) – белковые нитевидные структуры. Они встречаются двух типов: толстые (Ø – 11 – 14 нм, длиной – 1500 нм) и тонкие (Ø – 4 – 6 нм, длиной – 1000 нм).

Рис. 5. Участок миофибриллы.

Светлые диски (I ) состоят только из тонких протофибрилл, а темные диски (А ) – из прото­фибрилл двух видов: тонких, скрепленных между собой мембраной, и толстых, сосредоточенных в отдельной зоне (H ).

При сокращении саркомера длина темного диска (А ) не изменяется, а длина светлого диска (I ) уменьшается, поскольку тонкие протофибриллы (светлых дисков) вдвигаются в промежутки между толстыми (темных дисков). На поверхности протофибрилл расположены особые выросты – спайки (толщиной около 3 нм). В «рабочем положении» они образуют зацепление (поперечными мостиками) между толстыми и тонкими нитями протофибрилл (рис. 6). При сокращении Z -мембраны упираются в концы толстых про­тофибрилл, а тонкие протофибриллы могут даже накручиваться вокруг толстых. При сверхсокращении концы тонких нитей в центре саркомера заворачиваются, а концы толстых протофибрилл – сминаются.

Рис. 6. Формирование спайки между актином и миозином.

Энергообеспечение мышечных волокон осуществляется с помощью саркоплазматической сети (она же – саркоплазматический ретикулум ) – системы продольных и попе­речных трубочек, мембран, пузырьков, отсеков.

В саркоплазматической сети организованно и управляемо протекают различные биохимические процессы, сеть охватывает все вместе и каждую миофибриллу отдельно. Ретикулум включает рибосомы, они осуществляют синтез белков, и митохондрии – «клеточные энергетические станции» (по определению школьного учебника). Фактически митохондрии встроены между миофибриллами, что создает оптимальные условия для энергетического обеспечения процесса сокращения мышцы. Установлено, что в тренированных мышцах число митохондрий больше, чем в тех же нетренированных.

Химический состав мышц.

Вода с оставляет70 – 80 % веса мышцы.

Белки . На долюбелковприходится от17 до 21 % веса мышцы: примерно 40% всех мышечных белков сосредоточены в миофибриллах, 30% – в саркоплазме, 14% – в митохондриях, 15% – в сарколемме, остальные в ядрах и других клеточных орга­неллах.

В мышечной ткани содержатся ферментативные белки миогеновой группы, миоальбумин – запасной белок (его содержание с возрастом постепенно сни­жается), красный белок миоглобин – хромопротеид (его называют мышечным гемоглобином, он связывает кислорода больше, чем гемоглобин крови), а также глобулины, миофибриллярные белки. Болееполовины миофибриллярных белков приходится на миозин , около четверти – актин , остальное – тропомиозин, тропонин, α- и β-актинины, ферменты креатинфосфокиназа , дезаминаза и другие. В мышечной ткани имеются ядерные белки – нуклеопротеиды, митохондриальные белки. В белках стромы, оплетающей мышечную ткань, – основная часть – коллаген и эластин сарколеммы, а также миостромины (связанные с Z -мембранами).

Во дорастворимые азотистые соединения. В скелетных мышцах человека содержатся различные водорастворимые азотистые соединения: АТФ, от 0,25 до 0,4 %, креатинфосфат (КрФ) – от 0,4 до 1 % (при тренировке его количество увеличивается), продукты их распада – АДФ, АМФ, креатин. Кроме того, в мышцах содержатся дипептид карнозин, около 0,1 – 0,3 %, участвующий в восстановлении работоспособности мышц при утомлении; карнитин, отвечающий за перенос жирных кислот через кле­точные мембраны; амино­кислоты, и среди них преобладает глютаминовая (не этим ли объясняется применение глютамата натрия, читайте состав приправ, для придания пище вкуса мяса); пуриновые основания, мочевина и аммиак. Скелетные мышцы содержат также около 1,5 % фосфатидов, которые участвуют в тканевом дыхании.

Безазотистые соединения . В мышцах содержатся углеводы, гликоген и продукты его обмена, а также жиры, холестерин, кетоновые тела, минеральные соли. В зависи­мости от пищевого рациона и степени тренированности количество гликогена варьирует от 0,2 до 3 %, при этом тренировки увеличивают массу свободного гликогена. Запасные жиры в мышцах накапливаются в ходе тренировок на выносливость. Связанный с белками жир составляет примерно 1%, а в мембранах мышечного волокна может со­держаться до 0,2 % холестерина.

Минеральные вещества. Минеральные вещества мышечной ткани составляют примерно 1 – 1,5 % от веса мышцы, это, в основном, соли калия, натрия, кальция, магния. Минеральные ионы, такие как К + , Nа + , Мg 2+ , Са 2+ , Сl - , НР0 4 ~ играют важнейшую роль в биохимических процессах при сокращении мышц (их включают в состав «спортивных» добавок и минеральной воды).

Биохимия мышечных белков.

Основной сократительный белок мышц – миозин относится кфибриллярным белкам (Молекулярная масса около 470000). Важная особенность миозина – способность образовывать комплексы с молекулами АТФ и АДФ (что позволяет «отбирать» энергию у АТФ), и с белком – актином (что дает возможность удерживать сокращение).

Молекула миозина имеет отрицательный заряд и специфически взаимодействует с ионами Са ++ и Мg ++ . Миозин в присутствии ионов Са ++ ускоряет гидролиз АТФ, и, таким образом, проявляет ферментативную аденозинтрифосфатную активность:

миозин-АТФ +H2O → миозин + АДФ + H 3 PO 4 + работа (энергия 40 кДж/моль)

Белок миозин образован двумя одинаковыми, длинными полипептидными α-цепями, закрученными как двойная спираль, рис.7. Под действием протеолитических фер­ментов молекула миозина распадается на две части. Одна из ее частей способна связываться посредством спаек с актином, образуя актомиозин. Эта часть отвечает за аденозинтрифосфатазную активность, которая зависит от рН среды, оптимум – рН 6,0 - 9,5, а также концентрации КСl. Комплекс – актомиозин распадается в присутствии АТФ, но в отсутствие свободной АТФ он стабилен. Вторая часть молекулы миозина тоже состоит из двух перекрученных спиралей, за счет электростатического заряда они связывают молекулы миозина в протофибриллы.

Рис. 7. Структура актомиозина.

Второй важнейший сократительный белок – актин (рис. 7). Он может сущест­вовать в трех формах: мономерной (глобулярной), димерной (гло­булярной) и полимерной (фибриллярной). Мономерный глобуляр­ный актин, когда его полипептидные цепи плотно уложены в компактную сферическую структуру, связан с АТФ. Расщепляя АТФ, мономеры актина – А, образуют димеры, включающие АДФ: A – АДФ – A. Полимерный фибриллярный актин – двойная спираль, состоящая из димеров, рис. 7.

Актин глобулярный переходит в фибриллярный в присутствии ионов К + , Мg ++ и в живых мышцах преобладает фибриллярный актин.

В миофибриллах содержится значительное количество белка тропомиозина , который со­стоит из двух – α-спиральных полипептидных цепей. В покоящихся мышцах он образует комплекс с актином и блокирует его активные центры, поскольку актин способен связываться с ионами Са ++ они и снимают эту блокаду.

На молекулярном уровне толстые и тонкие протофибриллы саркомера взаимодействуют электростатически, так как имеют особые участки – выросты и выступы, где формируется заряд. На участке А-диска толстые протофибриллы построены из пучка продольно ориентированных молекул миозина, тонкие протофибриллы располагаются радиально вокруг толстых, образуя структуру, похожую на многожильный кабель. В центральной М-полосе толстых протофибрилл миозиновые молекулы соеди­нены своими «хвостами», а их выступающие «головы» – выросты направлены в разные стороны и расположены по пра­вильным спиральным линиям. Фактически напротив них в спиралях фибриллярного актина на определенном расстоянии друг от друга встроены мономерные глобулы актина тоже выступающие. В каждом выступе имеется активный центр, за счет которого возмож­но образование спаек с миозином. Z-мембраны саркомеров (как чередующиеся постаменты) скрепляют между собой тон­кие протофибриллы.

Биохимия сокращения и расслабления.

Циклические биохимические реакции, происходящие в мышце при сокращении, обеспечивают повторяющееся образо­вание и разрушение спаек между «головками» – выростами миозиновых моле­кул толстых протофибрилл и выступами – активными центрами тонких протофибрилл. Работа по образованию спайки и продвижению актиновой нити вдоль миозиновой требует как четкого управления, так и значительных затрат энергии. Реально в момент сокра­щения волокна образуется около 300 спаек в минуту в каждом активном центре – выступе.

Как мы уже отметили ранее, только энергия АТФ может быть непосредственно преобразована в механическую работу мышечного сокращения. Гидролизованная ферментативным центром миозина АТФ образует со всем белком миозином комплекс. В комплексе АТФ-миозин, насыщенный энергией миозин, изменяет свою структуру, а с ней и внешние «габариты» и совершает, таким способом, механическую работу по укорочению выроста миозиновой нити.

В покоящейся мышце миозин все равно связан с АТФ, но через ионы Мg ++ без гидролитического расщепления АТФ. Образованию спаек миозина с актином в покое препятствует комплекс тропомиозина с тропонином, блокирующий активные центры актина. Блокада удерживается и АТФ не расщепляется пока связаны ионы Са ++ . Когда к мышечному волокну приходит нервный импульс, выделяется пе­редатчик импульсов – нейрогормон ацетилхолин. Ионами Nа + отрицатель­ный заряд на внутренней поверхности сарколеммы нейтрализуется и происходит ее деполяризация. При этом ионы Са ++ освобождаются и связываются с тропонином. В свою очередь тропонин теряет заряд, отчего активные центры – выступы актиновых нитей деблокируются и возник­ают спайки между актином и миозином (поскольку электростатическое отталкивание тонких и тол­стых протофибрилл уже снято). Теперь в присутствии Са ++ АТФ взаимодействует с центром фермен­тативной активности миозина и расщепляется, а энергия преобразующегося комплекса используется для сокращения спайки. Цепь описанных выше молекулярных событий похожа на электрический ток, подзаряжающий микроконденсатор, его электрическая энергия тут же на месте преобразуется в механическую работу и нужно снова делать подзарядку (если хочешь двигаться дальше).

После разрыва спайки АТФ не расщепляется, а вновь образует фер­мент-субстратный комплекс с миозином:

М–А + АТФ -----> М – АТФ + А или

М–АДФ–А + АТФ ----> М–АТФ + А + АДФ

Если в этот момент поступает новый нервный импульс, то реак­ции «подзарядки» повторяются, если следующий импульс не поступает, происходит расслабление мышцы. Возвращение сокращенной мышцы при расслаблении в исход­ное состояние обеспечивается упругими силами белков мышечной стромы. Выдвигая современные гипотезы мышечного сокращения, ученые предполагают, что в момент сокращения происходит скольжение актиновых нитей вдоль миозиновых, а также возможно их укорочение за счет изменения пространственной структуры сократительных белков (изменения формы спирали).

В состоянии покоя АТФ оказывает пластифицирующий эффект: соединяясь с миозином она препятствует образованию его спаек с актином. Расщепляясь при сокращении мышцы, АТФ обеспечивает энергией процесс укорочения спайки, а также работу «кальциевого насоса» – подачу ионов Са ++ . Расщепление АТФ в мышце происходит с очень большой скоростью: до 10 микромолей на 1 г мышцы в минуту. Так как общие запасы АТФ в мышце невелики (их может хватить только на 0,5-1 сек работы с максимальной мощ­ностью), для обеспечения нормальной деятельности мышц АТФ должна восстанавливаться с такой же скоростью, с какой она рас­щепляется .

У животных и человека имеются два основных типа мышц:

  • поперечно-полосатые (прикрепляются к костям, т. е. к скелету, и поэтому еще называются скелетными, выделяют также сердечную мышцу, имеющую свои особенности);
  • гладкие (мускулатура стенок полых органов и кожи).

Строение мышечных клеток

Поперечно-полосатая мышца состоит из многочисленных удлиненных мышечных клеток. Двигательные нервы входят в различных точках в мышечное волокно и передают ему электрический импульс, вызывающий сокращение. Мышечное волокно обычно рассматривают как многоядерную клетку гигантских размеров, покрытую эластичной оболочкой - сарколеммой. Диаметр функционально зрелого поперечнополосатого мышечного волокна обычно составляет от 10 до 100 мкм, а длина волокна часто соответствует длине мышцы.

В саркоплазме мышечных волокон обнаруживается ряд структур: митохондрии, микросомы, рибосомы, трубочки и цистерны саркоплазматической сети, различные вакуоли, глыбки гликогена и включения липидов, играющие роль запасных энергетических материалов, и т. д.

В каждом мышечном волокне в полужидкой саркоплазме по длине волокна расположено, нередко в форме пучков, множество нитевидных образований - миофибрилл (толщина их обычно менее 1 мкм), обладающих, как и все волокно в целом, поперечной исчерченностью. Поперечная исчерченность волокна, зависящая от оптической неоднородности белковых веществ, локализованных во всех миофибриллах на одном уровне, легко выявляется при исследовании волокон скелетных мышц в поляризационном или фазово-контрастном микроскопе (рис. 2).

Повторяющимся элементом поперечно-полосатой миофибриллы является саркомер - участок миофибриллы, границами которого служат узкие 2-линии. Каждая миофибрилла состоит из нескольких сот саркомеров. Средняя длина саркомера 2,5-3,0 мкм. В середине саркомера находится зона протяженностью 1,5-1,6 мкм, темная в фазово-контрастном микроскопе. В поляризованном свете она дает сильное двойное лучепреломление. Эту зону принято называть диском А (анизотропный диск). В центре диска А расположена линия М, которую можно наблюдать только в электронном микроскопе. Среднюю часть диска А занимает зона Н более слабого двойного лучепреломления. Наконец, существуют изотропные диски, или диски I, с очень слабым двойным лучепреломлением. В фазовоконтрастном микроскопе они кажутся более светлыми, чем диски А. Длина дисков I около 1 мкм. Каждый из них разделен на две равные половины Z-мембраной, или Z-линией. Согласно современным представлениям, в дисках А расположены толстые нити, состоящие главным образом из белка миозина, и тонкие нити, состоящие, как правило, из второго компонента актомиозиновой системы- белка актина. Тонкие (актиновые) нити начинаются в пределах каждого саркомера у Z-линии, тянутся через диск I, проникают в диск А и прерываются в области зоны Н.

Рис. 2. Фотография микропрепарата поперечно-полосатой мышечной ткани

Рис. 3. Схема строения саркомера

При исследовании тонких срезов мышц под электронным микроскопом было обнаружено, что белковые нити расположены строго упорядоченно. Толстые нити диаметром 12-16 нм и длиной примерно 1,5 мкм уложены в форме шестиугольника диаметром 40-50 нм и проходят через весь диск А. Между этими толстыми нитями располагаются тонкие нити диаметром 8 нм, простираясь от 2-линии на расстояние около 1 мкм (рис. 3). Изучение мышцы в состоянии сокращения показало, что диски I в ней почти исчезают, а область перекрывания толстых и тонких нитей увеличивается (в скелетной мышце в состоянии сокращения саркомер укорачивается до 1,7-1,8 мкм).

Согласно модели, предложенной Э. Хаксли и Р. Нидергерке, а также X. Хаксли и Дж. Хенсоном, при сокращении миофибрилл одна система нитей проникает в другую, т. е. нити начинают как бы скользить друг по другу, что и является причиной мышечного сокращения.

Мышцы способны использовать для сокращения около 30% химической энергии, запасенной в молекулах АТФ. Для понимания биохимических процессов, протекающих в мышцах, большое значение имело открытие в 1939 г. В. А. Энгельгардтом и М. Н. Любимовой ферментативной активности комплексов актина с миозином (актомиозин). Они показали, что источником энергии сокращения мышц является гидролиз молекул АТФ при взаимодействии с актомиозином.

Образующиеся при гидролизе молекулы АДФ быстро восстанавливаются до АТФ при присоединении фосфатной группы в результате реакции

Креатинфосфат синтезируется в митохондриях в процессе окислительного фосфорилирования. Скорость дыхания и, следовательно, скорость образования АТФ в мышцах определяется скоростью потребления АТФ. При большой концентрации молекул АТФ в мышцах имеется малая концентрация молекул АДФ и неорганического фосфата. Они ингибируют активность цикла трикарбоновых кислот в митохондриях. При переходе от покоя к полной активности происходит быстрый гидролиз молекул АТФ, концентрация молекул АДФ и неорганического фосфата увеличивается, что приводит к интенсификации процесса гликолиза и окислительного фосфорилирования в митохондриях. При этом потребление кислорода может увеличиться в 20 и более раз.

При максимальной активности мышц, наряду с окислением глюкозы через цикл трикарбоновых кислот в митохондриях происходит усиленный процесс анаэробного гликолиза в трубках саркоплазматической сети. При этом выделяется молочная кислота, которая диффундирует в кровь. После некоторого периода максимальной работы у млекопитающих наблюдается учащенное дыхание. Поступающий кислород расходуется на окисление через цикл трикарбоновых кислот в тканях печени некоторой части избытка молочной кислоты, образовавшейся в период максимальной мышечной активности. При этом синтезируются молекулы АТФ. Остальная часть молочной кислоты, накопившейся в крови, превращается в печени в гликоген.

Актомиозин - комплекс миозина с F-актином - образуется в растворах при смешивании чистых фракций миозина и актина. Оказалось, что с нитями F-актина связываются только головы миозиновых молекул. При добавлении в раствор, содержащий актомиозиновые комплексы, молекул АТФ и ионов происходит диссоциация комплексов актомиозина. Головы миозиновых молекул отрываются от актиновых нитей. При этом происходит неконтролируемый гидролиз молекул АТФ.

Наличие молекул АТФ и ионов в саркоплазме живых мышечных волокон также приводит к разрыву связи тонких нитей с головами миозиновых молекул толстых нитей. После смерти животного количество молекул АТФ в саркоплазме постепенно сокращается и головы миозиновых молекул жестко прикрепляются к тонким нитям - происходит трупное окоченение (мышечные волокна не растягиваются).

При наличии ионов и молекул АТФ в саркоплазме тонкие нити сравнительно свободно перемещаются относительно толстых при наложении внешней нагрузки. Таким образом, комплексы играют роль расслабляющих агентов. Они препятствуют образованию связей (по-видимому, электростатических) между топкими нитями и головами миозиновых молекул;

Разрыв связей между тонкими нитями и головами миозиновых молекул, осуществляемый молекулами АТФ и ионами в мышцах, не приводит, однако, к гидролизу молекул АТФ. Комплексы присоединяются к головам миозиновых молекул. Такое существенно различное поведение топких нитей в саркомере и -актиновых нитей без молекул тропонина и тропомиозина в растворе с миозиновыми молекулами обусловлено наличием в тонких нитях кроме молекул актина двух других белков: тропомиозина и тропонина.

Гидролиз молекул АТФ, прикрепленных к головам миозиновых молекул, в саркомере происходит только в том случае, если уровень концентрации ионов в саркоплазме повысится до значения моль в результате выхода ионов из концевых цистерн саркоплазматической сети при поступлении нервного импульса. Таким образом, вследствие специальной организации четырех типов белков (миозина, актина, актомиозина и тропонина) процесс гидролиза молекул АТФ и, следовательно, процесс сокращения длин мышечных волокон, становится контролируемым . Роль кальция в процессе сокращения была выяснена Маршем в 1952 г. . Решающие эксперименты о контроле сокращения мышц ионами кальция в присутствии молекул тропонина и тропомиозина были выполнены Эбаши, Вебер, Мурей и др. .

Исследовались растворы голов миозиновых молекул и тонких нитей, извлеченных из мышечных волокон при удалении толстых нитей и отделении их от -пластинок. Голова миозиновой молекулы отделяется от остальной ее части с помощью специального фермента. Изолированные миозиновые головы имеют такую же химическую активность, как и неповрежденные молекулы, однако с изолированными головами работать более удобно.

При исследовании растворов миозиновых голов и тонких нитей в физиологических условиях (значения pH, концентрация ионов и т. д.) Эбаши показал, что так же, как и в случае неповрежденных мышечных волокон, гидролиз молекул АТФ полностью контролируется ионами . Однако, если из тонких нитей удалить молекулы тропомиозина и тропонина, то чувствительность к ионам полностью исчезает. Гидролиз молекул АТФ оставался неконтролируемым, пока не исчезали все молекулы АТФ. Таким образом, было показано, что кальциевый контроль становится, возможным только в присутствии комплекса молекул тропонина и тропомиозина на тонких нитях. В отдельности тропомиозин и тропонин не оказывают такого действия.

Регулирующее действие ионов на процесс мышечного сокращения можно рассматривать по аналогии с действием модуляторов

(эффекторов) на ферменты. Когда присоединяются к молекуле тропонина, сигнал о присоединении передается молекуле тропомиояина, которая передав! его семи молекулам актина. Таким образом, тропомиозин выступает как медиатор информации от тропонина . Молекулярный механизм такой передачи остается неизвестным.

В состоянии релаксации (малая концентрация ) тропонин, действуя через тропомиозин, каким-то образом подавляет взаимодействие голов миозиновых молекул с актином. При повышении концентрации ионов это препятствие снимается, молекулы АТФ гидролизируются и мышцы сокращаются. Следовательно, комплекс молекул фопонин 4- тропомиозин действует как ингибитор, а ионы - как активатор мышечного сокращения.

Регулирующая роль ионов проявляется только при наличии в саркоплазме молекул АТФ. При отсутствии молекул АТФ (после смерти животного) головы миозиновых молекул жестко связываются с тонкими нитями - наступает трупное окоченение. В саркоплазме живых мышечных волокон, молекул АТФ много. При физиологических условиях молекулы АТФ теряют четыре электрона и с ионами образуют комплексы Эти комплексы активно соединяются с головами миозиновых молекул, образуя более сложные комплексы -миозин, которые мы будем кратко называть АТФ-миозиновыми комплек сами.

Одна из рабочих гипотез о механизме осуществления контроля мышечного сокращения ионами кальция была высказана Перри в Оксфордском университете. Он предположил, что при отсутствии ионов молекулы тропонина и тропомиозина препятствуют контакту активных мест голов миозина и молекул актина. Присоединение ионов к молекулам тропонина вызывает такое конформационное изменение комплекса тропонин тропомиозин, которое снимает это стерическое препятствие.

Косвенное подтверждение гипотеза Перри получила при исследованиях диффракции рентгеновских лучей, проведенных Хаксли в 1972-1973 гг. на сокращающихся мышцах. Было показано, что во время сокращения происходит небольшое, но определенное смещение диффракционной картины, обусловленное изменением тонких нитей. Можно было думать, что эти изменения отражают смещение молекул тропомиозина в желобках двойных спиралей тонких нитей. В состоянии релаксации молекулы тропомиозина лежат вблизи внешнего края желобков. При повышении концентрации ионов они смещаются внутрь желобков, освобождая активные места молекул миозина.

Смещение молекул тропомиозина в желобках тонких нитей зарегистрировано Хаксли при исследовании диффракции рентгеновских лучей на сокращающейся мышце. В исследованиях Коэна и Марюссиана (100, 101] обнаружено, что присоединение ионов к субъединице существенно изменяет ее связь с двумя другими субъединицами комплекса. В исследованиях Хитчкука, Хаксли и Сент-Дьерди установлено, что при увеличении концентрации ионов ослабевает связь субъединицы с актином.

Перечисленные результаты качественно подтверждают стерическую модель регулирования ионами процесса мышечного сокращения. При малой концентрации ионов тропониновый комплекс расширен, субъединицы прочно связаны с актином и выталкивают молекулы тропомиозина со дна желобков двойной спирали. При этом молекула тропомиозина блокирует активные центры семи молекул актина от присоединения к ним головок миозиновых молекул (АТФ-миозиновых комплексов). При повышении уровня ионов их присоединение к субъединице приводит к сжатию тропонинового комплекса и ослаблению его связи с молекулами актина. Вследствие этого молекулы тропомиозина смещаются в желобки и освобождают активные центры молекул актина. АТФ-миозиновые комплексы голов миозиновых молекул присоединяются к активным молекулам, происходит гидролиз молекул АТФ и распад АТФ-миозиновых комплексов, что и приводит к сокращению мышц. При этом молекулы АДФ и органический фосфат переходят в саркоплазму. Далее к головам миозиновых молекул снова присоединяются комплексы образуя АТФ-миозиновые комплексы, готовые к новому циклу.

Вебер и Муррей высказали предположение, что процессу гидролиза молекул АТФ предшествует переход АТФ-миозинового комплекса в особое высокоэнергетическое гипотетическое заряженное состояние. В этом состоянии комплекс имеет большую вероятность присоединения к тонким нитям, чем комплекс, находящийся в начальном низкоэнергетическом состоянии. Остается, однако, неясным, что приводит АТФ-миозиновый комплекс в высокоэнергетическое заряженное состояние. Ведь это состояние должно предшествовать процессу гидролиза с выделением энергии.

После открытия тропонина появилось убеждение, что только комплексы тропонина с тропомиозином ответственны за контроль мышечцого сокращения ионами Однако в 1970 г. Сент-Дьерди показал, что молекул тропонина не имеется в мышцах моллюсков. По-видимому, в этих мышцах ионы осуществляют контроль процесса сокращения непосредственно через молекулы тропомиозина.