Напомним, что на катоде протекают процессы восстановления, на аноде - процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H 2:
2H 2 O + 2e → H 2 0 + 2OH - .
Например, в случае электролиза растворов NaNO 3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H 2 .
Например, в случае электролиза раствора H 2 SO 4 .

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F -), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl - - 2e → Cl 2 .

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды - почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH - и H + не могут стоять по разные стороны одного уравнения; 2) H 2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H 2), а на аноде протекают только процессы окисления.
4OH - - 4e → O 2 + 2H 2 O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H 2 O - 4e → O 2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO 2 и удвоение остатка углеродной цепи:
2R-COO - - 2e → R-R + 2CO 2 .

Примеры:

1. Раствор NaCl


NaCl → Na + + Cl -

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
А: 2Cl - - 2e → Cl 2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl - + 2H 2 O → H 2 0 + 2Na + + 2OH - + Cl 2 . Соединяем катионы и анионы:
2NaCl + 2H 2 O → H 2 0 + 2NaOH + Cl 2 .

2. Раствор Na 2 SO 4

Расписываем диссоциацию на ионы:
Na 2 SO 4 → 2Na + + SO 4 2-

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H 2 O + 2e → H 2 0 + 2OH -
А: 2H 2 O - 4e → O 2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H 2 O + 4e → 2H 2 0 + 4OH -
А: 2H 2 O - 4e → O 2 0 + 4H + .


6H 2 O → 2H 2 0 + 4OH - + 4H + + O 2 0 .

4OH- и 4H+ соединяем в 4 молекулы H 2 O:
6H 2 O → 2H 2 0 + 4H 2 O + O 2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H 2 O и получаем итоговое уравнение гидролиза:
2H 2 O → 2H 2 0 + O 2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl 2

Расписываем диссоциацию на ионы:
CuCl 2 → Cu 2+ + 2Cl -

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К : Cu 2+ + 2e → Cu 0
A: 2Cl - - 2e → Cl 2


CuCl 2 → Cu 0 + Cl 2 .

4. Раствор CuSO 4

Расписываем диссоциацию на ионы:
CuSO 4 → Cu 2+ + SO 4 2-

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO 4 2- 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO 4 2- + 2H 2 O → 2Cu 0 + O 2 + 4H + + 2SO 4 2- .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO 4 + 2H 2 O → 2Cu 0 + O 2 + 2H 2 SO 4 .

5. Раствор NiCl 2

Расписываем диссоциацию на ионы:
NiCl 2 → Ni 2+ + 2Cl -

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К : Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
A: 2Cl - - 2e → Cl 2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
Ni 2+ (в растворе)
A: 4Cl - - 4e → 2Cl 2

Замечаем, что согласно формуле NiCl 2 , соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl 2 . Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl - + 2H 2 O → Ni 0 + H 2 0 + 2OH - + Ni 2+ + 2Cl 2 .

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl 2 + 2H 2 O → Ni 0 + H 2 0 + Ni(OH) 2 + 2Cl 2 .

6. Раствор NiSO 4

Расписываем диссоциацию на ионы:
NiSO 4 → Ni 2+ + SO 4 2-

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
A: SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H 2 O + 2e → H 2 0 + 2OH -
Ni 2+ (в растворе)
A: 2SO 4 2- (в растворе)
2H 2 O - 4e → O 2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO 4 2- + 2H 2 O + 2H 2 O → Ni 0 + Ni 2+ + 2OH - + H 2 0 + O 2 0 + 2SO 4 2- + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO 4 + 4H 2 O → Ni 0 + Ni(OH) 2 + H 2 0 + O 2 0 + 2H 2 SO 4 .

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH - с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO 4 2- + 2H 2 O + 2H 2 O → Ni 0 + 2OH - + H 2 0 + O 2 0 + SO 4 2- + 4H + .

Ni 2+ + SO 4 2- + 4H 2 O → Ni 0 + H 2 0 + O 2 0 + SO 4 2- + 2H + + 2H 2 O.

Итоговое уравнение:

NiSO 4 + 2H 2 O → Ni 0 + H 2 0 + O 2 0 + H 2 SO 4 .

7. Раствор CH 3 COONa

Расписываем диссоциацию на ионы:
CH 3 COONa → CH 3 COO - + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H 2 O + 2e → H 2 0 + 2OH -
А: 2CH 3 COO - - 2e → CH 3 -CH 3 + CO 2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH 3 COO - + 2H 2 O → 2Na + + 2OH - + H 2 0 + CH 3 -CH 3 + CO 2

Соединяем катионы и анионы:
2CH 3 COONa + 2H 2 O → 2NaOH + H 2 0 + CH 3 -CH 3 + CO 2 .

8. Раствор H 2 SO 4

Расписываем диссоциацию на ионы:
H 2 SO 4 → 2H + + SO 4 2-

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К : 2H + +2e → H 2
A: 2H 2 O - 4e → O 2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К : 4H + +4e → 2H 2
A: 2H 2 O - 4e → O 2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H 2 O → 2H 2 + O 2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H 2 O:
2H 2 O → 2H 2 + O 2 .

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH -

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H 2 O + 2e → H 2 0 + 2OH -
А: 4OH - - 4e → O 2 + 2H 2 O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H 2 O + 4e → 2H 2 0 + 4OH -
А: 4OH - - 4e → O 2 + 2H 2 O

Суммируем левые и правые части процессов:
4H 2 O + 4OH - → 2H 2 0 + 4OH - + O 2 0 + 2H 2 O

Сокращая 2H 2 O и ионы OH - , получаем итоговое уравнение электролиза:
2H 2 O → 2H 2 + O 2 .

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H 2 O → 2H 2 + O 2 .

Электролизер– это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

Что это

Электролизерработает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

Виды и типы
По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
  1. Прессованными обожженными анодами.
  2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
  3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:

  • Сухие.
  • Проточные.
  • Мембранные.
  • Диафрагменные.

Устройство

Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

Устройство в большинстве случаев состоит из следующих элементов:
  • Электропроводящий корпус.
  • Катод.
  • Анод.
  • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

Принцип действия

В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

Применение

Электролизершироко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

  • Добычи цветных металлов (магний, алюминий).
  • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
  • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
  • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.

Процессы, протекающие при электролизе

Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ.

Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов - получение возможно более чистых незагрязненных примесями веществ.

В отличие от металлов в электролитах (растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также в расплавленных соединениях) наблюдается ионная электропроводность.

Электролиты являются проводниками второго рода. В этих растворах и расплавах имеет место электролитическая диссоциация - распад на положительно и отрицательно заряженные ионы.

Если в сосуд с электролитом - электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы - катионы будут двигаться к катоду (это в основном металлы и водород), а отрицательно заряженные ионы - анионы (хлор, кислород) - к аноду.

У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху.

Рис. 1. Процессы, протекающие при электролизе. Схема электролизной ванны: 1 - ванна, 2 - электролит, 3 - анод, 4 - катод, 5 - источник питания

Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду (рис. 1). При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита (электроэкстракцию).

Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием.

Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора.

Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества (катодный процесс), если же более положительный, то начнется его растворение (анодный процесс).

Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл. 1 даны нормальные электродные потенциалы некоторых водных растворов веществ при +25° С.

Таблица 1. Нормальные электродные потенциалы при +25° С

Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель), щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов.

Нормальные электродные потенциалы веществ, указанные в табл. 1, являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса.

Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.

С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ.

Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея.

1. Масса вещества m э, выделившегося при электролизе на катоде или перешедшего с анода в электролит, пропорциональна количеству прошедшего через электролит электричества Iτ : m э = α /τ ,здесь а - электрохимический эквивалент вещества, г/Кл.

2. Масса выделенного при электролизе вещества одним и тем же количеством электричества прямо пропорциональна атомной массе вещества А и обратно пропорциональна его валентности n : m э = А / 96480n , здесь 96480 - число Фарадея, Кл х моль -1 .

Таким образом, электрохимический эквивалент вещества α = А / 96480n представляет собой массу вещества в граммах, выделяемую единицей проходящего через электролитическую ванну количества электричества - кулоном (ампер-секундой).

Для меди А = 63,54, n =2, α =63,54/96480 -2 = 0,000329 г/Кл, для никеля α =0,000304 г/Кл, для цинка α =0,00034 г/Кл.

В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне (например, выделением водорода на катоде), утечками тока и короткими замыканиями между электродами.

Отношение массы фактически выделившегося вещества к массе его, которая должна была бы выделиться по закону Фарадея, носит название выхода вещества по току η1.

Следовательно, для реального процесса m э = η1 х ( А / 96480n) х It

Естественно, всегда η1

Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса.

Напряжение U эл, которое необходимо подвести к электролизеру, состоит из: напряжения разложения Ер (разность потенциалов анодной и катодной реакций), суммы анодного и катодного перенапряжений падения напряжения в электролите Еп, падения напряжения в электролите U э = IR эп (R эп - сопротивление электролита), падения напряжения в шинах, контактах, электродах U с = I (R ш+R к+R э). Получаем: U эл = Ер + Еп + U э + U с.

Мощность, потребляемая при электролизе, равна: Рэл = IU эл = I (Ер + Еп + U э + U с)

Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IU э, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей.

Эффективность работы электролизной ванны, может быть оценена массой вещества в граммах, выделяемого на 1 Дж затраченной электроэнергии. Эта величина носит название выхода вещества по энергии. Ее можно найти по выражению q э = (αη1)/U эл100, здесь α - электрохимический эквивалент вещества, г/Кл, η1 - выход по току, U эл - напряжение на электролизере, В.

Электролиз – процесс, при котором электрическая энергия преобразуется в химическую. Этот процесс протекает на электродах под действием постоянного тока. Каковы продукты электролиза расплавов и растворов, и что входит в понятие «электролиз».

Электролиз расплавов солей

Электролиз – это окислительно-восстановительные реакции протекающие на электродах при пропускании постоянного электрического тока через раствор или расплав электролита.

Рис. 1. Понятие электролиза.

Хаотическое движение ионов под действием тока делается упорядоченным. Анионы движутся к положительному электроду (аноду) и окисляются на нем, отдавая электроны. Катионы движутся к отрицательному полюсу (катоду) и восстанавливаются на нем, принимая электроны.

Электроды могут быть инертными (металлическими из платины или золота или неметаллическими из угля или графита) или активными. Анод в этом случае растворяется в процессе электролиза (растворимый анод). Его изготавливают из таких металлов, как хром, никель, цинк, серебро, медь и т. д.

При электролизе расплавов солей, щелочей, оксидов катионы металлов разряжаются на катоде с образованием простых веществ. Электролиз расплавов является промышленным способом получения таких металлов, как натрий, калий, кальций (электролиз расплавов солей) и алюминий (электролиз расплава оксида алюминия Al 2 O 3 в криолите Na 3 AlF 6 , используемом для облегчения переведения оксида в расплав). Например, схема электролиза расплава поваренной соли NaCl происходит так:

NaCl Na + + Cl -

Катод (-) (Na +): Na + + е = Na 0

Анод (-) (Cl -): Cl - - е = Cl 0 , 2Cl 0 = Cl 2

Суммарный процесс:

2Na+ +2Cl- = электролиз 2Na + 2Cl 2

2NaCl = электролиз 2Na + Cl 2

Одновременно с получением щелочного металла натрия при электролизе соли получают хлор.

Электролиз растворов солей

Если электролизу подвергаются растворы солей, то, наряду с ионами, образующимися при диссоциации соли, окисляться или восстанавливаться на электродах может и вода.

Существует определенная последовательность разряжения ионов на электродах в водных растворах.

1. Чем выше стандартный электродный потенциал металла, тем легче он восстанавливается. Иначе говоря, чем правее стоит металл в электрохимическом ряду напряжений, тем легче его ионы будут восстанавливаться на катоде. При электролизе растворов солей металлов от лития до алюминия включительно на катоде всегда восстанавливаются молекулы воды:

2H 2 O+2e=H 2 +2OH-

Если электролизу подвергаются растворы солей металлов, начиная с меди и правее меди, на катоде восстанавливаются только катионы металлов. При электролизе солей металлов от марганца MN до свинца Pb могут восстанавливаться как катионы металлов, так, в некоторых случаях, и вода.

2. На аноде окисляются анионы кислотных остатков (кроме F-). Если электролизу подвергаются соли кислородосодержащих кислот, то анионы кислотных остатков остаются в растворе, окисляется вода:

2H 2 O-4e=O 2 +4H+

3. Если анод растворимый, то происходит окисление и растворение самого анода:

Пример : электролиз водного раствора сульфата натрия Na 2 SO 4:

Электролиз расплавов и растворов (солей, щелочей)

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).

На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Электролиз расплавленных солей

Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:

$NaCl→Na^{+}+Cl^{-}.$

Под действием электрического тока катионы $Na^{+}$ движутся к катоду и принимают от него электроны:

$Na^{+}+ē→{Na}↖{0}$ (восстановление).

Анионы $Cl^{-}$ движутся к аноду и отдают электроны:

$2Cl^{-}-2ē→{Cl_2}↖{0}$ (окисление).

Суммарное уравнение процессов:

$Na^{+}+ē→{Na}↖{0}|2$

$2Cl^{-}-2ē→{Cl_2}↖{0}|1$

$2Na^{+}+2Cl^{-}=2{Na}↖{0}+{Cl_2}↖{0}$

$2NaCl{→}↖{\text"электролиз"}2Na+Cl_2$

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Электролиз водных растворов электролитов

Более сложный случай — электролиз растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:

1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2$). Катионы металла не восстанавливаются, они остаются в растворе.

1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.

1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.

Катодные процессы

2. Процесс на аноде зависит от материала анода и от природы аниона.

Анодные процессы

2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.

2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:

а) при электролизе растворов солей бескислородных кислот (кроме фторидов ) на аноде идет процесс окисления аниона;

б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2$). Анионы не окисляются, они остаются в растворе;

в) анионы по их способности окисляться располагаются в следующем порядке:

Попробуем применить эти правила в конкретных ситуациях.

Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Суммарное уравнение:

$2H_2O+2Cl^{-}=H_2+Cl_2+2OH^{-}$.

Учитывая присутствие ионов $Na^{+}$ в растворе, составляем молекулярное уравнение:

2) Анод растворимый (например, медный):

$NaCl=Na^{+}+Cl^{-}$.

Если анод растворимый, то металл анода будет окисляться:

$Cu^{0}-2ē=Cu^{2+}$.

Катионы $Cu^{2+}$ в ряду напряжений стоят после ($Н^{+}$), по этому они и будут восстанавливаться на катоде.

Концентрация $NaCl$ в растворе не меняется.

Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде :

$Cu^{2+}+2ē=Cu^{0}|2$

$2H_2O-4ē=O_2+4H^{+}|1$

Суммарное ионное уравнение:

$2Cu^{2+}+2H_2O=2Cu^{0}+O_2+4H^{+}$

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4^{2-}$ в растворе:

Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:

$2H_2O+2ē=H_2+2OH^{-}|2$

$4OH^{-}-4ē=O_2+2H_2O|1$

Суммарное ионное уравнение:

$4H_2O+4OH^{-}=2H_2+4OH^{-}+O_2+2H_2O$

Суммарное молекулярное уравнение:

$2H_2O{→}↖{\text"электролиз"}2H_2+O_2$

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.

Электролиз расплавов и растворов веществ широко используется в промышленности:

  1. Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
  2. Для получения водорода, галогенов, щелочей.
  3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
  4. Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
  5. Для получения металлических копий, пластинок — гальванопластика.