Существуют два хорошо охарактеризованных пути апоптоза: с участием рецепторов клеточной гибели (внешний путь) и с участием митохондрий (собственный путь)

Активация каспаз и апоптоз индуцируются связыванием специфических лигандов из группы TNF со своими рецепторами (рецепторы клеточной гибели)

У позвоночных активация каспаз происходит при различных путях . На рисунке ниже представлены два хорошо известных пути. Это путь с участием рецепторов клеточной гибели (который также называется внешний путь) и путь с участием митохондрий (собственный путь). Хотя между обоими путями имеется несколько существенных различий, они обладают чертой сходства, котороая заключается в том, что каждый включает этап активации инициирующей каспазы по механизму индуцированного сближения с последующей активацией эффекторных каспаз.

Вместе с тем, наблюдается некоторый перекрест между двумя механизмами , поскольку путь с участием рецепторов клеточной гибели может включать элементы митохондриального пути.

Представляют собой подгруппу относящихся к семейству рецепторов фактора некроза опухоли (TNFR) позвоночных. Они включают TNFR1, Fas (также называемый CD95 или АРО-1) и TRAIL (TRAIL-R1, -R2 у человека, также называемые DR4 и DR5). На рисунке ниже представлены различные типы рецепторов клеточной гибели.

Эти тримерные рецепторы связываются со специфическими лигандами (TNF, Fas-лигандом или TRAIL соответственно) и могут быстро запускать в клетках процесс апоптоза. Лиганды продуцируются различными клетками, включая клетки иммунной системы, часто в ответ на факторы, вызывающие воспаление.

Рецепторы гибели клеток содержат домен смерти, расположенный внутри клетки. Эти домены, как и домены CARD, DED и PYR, представляют собой еще один пример складок смерти, и они взаимодействуют с доменами смерти в адаптерных молекулах.

Находятся на поверхности клеток в виде тримеров, и, вероятно, соответствующие лиганды располагаются в виде кластеров, которые связаны с двумя и более этих тримеров. Такое расположение делает рецепторы доступными для взаимодействия с внутриклеточными белками. После связывания между собой доменов гибели Fas/CD95 и рецепторов TRAIL, они ассоциируют с адаптерным белком FADD (Fas-associated death domain). Эта ассоциация возникает при участии домена гибели FADD белка.

При этом в клетке молекулы FADD сближаются, и становится доступным другой регион белка, содержащий DED.

Домен DED белка FADD теперь связывается с DED-участками продомена мономера каспазы-8, что приводит к образованию димеров и активации инициаторной каспазы по механизму индуцированного сближения. После связывания рецептора гибели быстро образуется комплекс, содержащий FADD (за счет взаимодействия с доменом гибели). FADD связан с каспазой-8 (за счет взаимодействия с DED). Это сигнальный комплекс, индуцирующий клеточную гибель (англ, death-inducing signaling complex, DISC).

Активированная каспаза-8 начинает расщеплять в клетке субстраты, включая эффекторные каспазы-3 и -7, и происходит апоптоз. На рисунке ниже представлена последовательность событий при развитии апоптоза с участием рецепторов клеточной гибели.

Известно много примеров апоптоза , происходящего с участием рецепторов клеточной гибели. Этот путь особенно характерен для функционирования эффекторов иммунной системы и для регуляции иммунных процессов. Внешний путь апоптоза также реализуется в клетках другого происхождения, включая нейроны. В настоящее время в качестве возможного противоопухолевого средства исследуется TRAIL, который обладает способностью индуцировать апоптоз в клетках некоторых опухолей.

В соответствии с установленной ролью Fas в иммунной системе у людей, а также у мышей, несущих мутации, затрагивающие Fas или его лиганд, наблюдается заболевание, при котором происходит массивное разрастание лимфатических органов. Это разрастание обусловлено накоплением измененной популяции Т-клеток. У больных также отмечаются аномалии В-лимфоцитов, включающие продуцирование аутоиммунных антител и развитие В-клеточных лимфом.

Представлены два пути реализации апоптоза у позвоночных.
Путь через рецепторы клеточной гибели (также носящий название внешний путь) запускается, когда специфические лиганды гибели, относящиеся к семейству TNF, находят свои рецепторы.
Митохондриальный путь (также называемый внутренним, или собственным, путем)
реализуется при нарушении проницаемости наружной мембраны митохондрий в результате взаимодействий белков семейства Bcl-2 и высвобождения межмембранных белков.
К числу последних относится цитохром С, который при взаимодействии с белками цитозоля запускает активацию каспаз.
Эти процессы подробно рассмотрены в последующих статьях на сайте.

Рецепторы клеточной гибели относятся к семейству TNF-рецепторов,
у которых со стороны клетки расположены домены клеточной гибели.
На поверхности многих типов клеток позвоночных эти рецепторы существуют в виде тримеров.
При связывании лиганда с рецептором клеточной гибели на поверхности клетки, адаптерный белок FADD присоединяется к нему с клеточной стороны.
Это происходит при взаимодействии доменов клеточной гибели (DD)-(DD).
Затем при участии эффекторных доменов клеточной гибели (DED)-(DED) к белку FADD присоединяется каспаза-8.
При димеризации каспазы-8 фермент активируется по механизму индуцированной близости.
Активная каспаза расщепляет и активирует эффекторные каспазы, которые вызывают апоптоз.
Комплекс, содержащий рецептор клеточной гибели, FADD и каспазу-8, называется сигнальным комплексом индукции клеточной гибели (DISC).

Апоптоз: заказное самоубийство

Само название этого типа клеточной смерти – апоптоз, что в переводе с греческого означает «падающие листья», говорит о том, что он является такой же естественной и неотъемлемой чертой многоклеточного организма, как сезонная смена листвы для деревьев. Апоптоз запускается, когда клетка имеет серьезные повреждения, ведущие к нарушению ее функций: в результате слаженной работы специальных систем, необратимо повреждающих основные клеточные структуры, такая клетка заканчивает жизнь «самоубийством».

Все клетки многоклеточных существ несут в себе потенциальную способность к апоптозу, так же как японские самураи всю жизнь носят с собой меч. И если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности

Каждый день и каждый час в нашем организме погибают миллионы клеток. Отшелушиваются ороговевшие клетки покровного эпителия, быстро изнашиваются и гибнут клетки слизистой ткани, выстилающей пищеварительный тракт, лейкоциты – белые клетки крови, находят свою смерть в борьбе с патогенами… Но как наше тело избавляется от специализированных клеток, когда в результате накопившихся внутренних повреждений они становятся неспособными выполнять свои функции? Одним из самых парадоксальных и удивительных механизмов, контролирующих жизнеспособность многоклеточного организма, является апоптоз – клеточная самоликвидация.

Регулярная, генетически запрограммированная гибель отдельных клеток необходима для нормального функционирования организма в целом. Все клетки многоклеточных существ обладают аппаратом апоптоза, так же как японские самураи всю жизнь носят с собой меч. Однако у этого естественного процесса есть и обратная сторона: если по каким-то причинам тонкий механизм апоптоза разлаживается, последствия для организма могут оказаться самыми катастрофическими.

Нарушения в запуске апоптоза ведут к возникновению ряда серьезных заболеваний, в том числе аутоиммунных и онкологических. Например, раковые клетки, блокируя систему апоптоза, приобретают бессмертие. Поэтому изучение механизмов клеточной самоликвидации является важнейшим направлением современных биомедицинских исследований: раскрытие тайн апоптоза поможет в разработке новых лекарств для борьбы с самыми тяжелыми и трудноизлечимыми болезнями современности.

Ферменты-киллеры

Итак, клетка выполнила свои функции, «постарела» и готова к самоуничтожению во благо всему организму. Кто же выполняет это «заказное» самоубийство?

Оказывается, в этом «детективе» про апоптоз имеются и свои затаившиеся киллеры. В этой роли выступают особые ферменты – каспазы , имеющиеся в каждой клетке (Salvesen, 2002; Nicholson, 1999; Lavrik et al ., 2005). Обычно каспазы присутствуют в клеточной цитоплазме в виде неактивных предшественников (прокаспаз). Прокаспазы не проявляют никакой активности, мирно сосуществуя в клетке вместе с другими белками, однако при поступлении сигнала на самоуничтожение они превращаются в настоящие белки-убийцы.

«Смена имиджа» безобидных прокаспаз происходит так: белок расщепляется на три фрагмента, один из которых (продомен ) отщепляется, а остальные соеди­няются с двумя аналогичными фрагментами другой прокаспазы. Благодаря такой структурной перестройке образуется активный гетеротетрамер каспазы, в котором аминокислоты формируют центр фермента, выполняющий каталитическую функцию (Salvesen, 2002).

Образовавшиеся активные каспазы наконец показывают свое настоящее лицо: они начинают расщеплять все белки, которые содержат остатки аминокислоты аспарагина (при условии, что рядом располагаются определенным образом остатки еще трех других аминокислот). В результате такой «подрывной» деятельности в клетке оказываются поврежденными сотни белков. К числу наиболее известных мишеней каспаз относятся белки цитоскелета (структурного каркаса клетки); белки, отвечающие за репарацию (восстановление) поврежденной ДНК; структурные белки оболочки клеточного ядра, а также ряд других жизненно важных белков. Все это приводит к нарушению всех процессов жизнедеятельности клетки.

В то же время каспазы активируют ряд белков, которые участвуют в выполнении программы самоликвидации. Например, белка, который разрезает ДНК на большие фрагменты, – этот процесс, после которого целостность ДНК необратимо уничтожается, является характерной чертой апоптоза.

Сигнал на запуск

Но каким же образом клетка узнает, что ей пора самоликвидироваться? Кто и как дает указания киллерам-каспазам?

Имеется два основных пути, по которым передаются апоптопические сигналы в виде клеточных регуляторов, таких как гормоны, антигены, моноклональные антитела и другие молекулы. Это митохондриальный (или внутренний) путь, а также через особые трансмембранные белки – так называемые рецепторы смерти (DR, от англ. death receptor ). В обоих случаях для запуска апоптоза должны образоваться особые инициаторные апоптотические комплексы . Затем происходит активация так называемых инициаторных каспаз, которые, в свою очередь, активируют эффекторные (разрушающие клеточные структуры) каспазы, о которых упоминалось выше (Nicholson, 1999).

Митохондриальный путь инициируется в результате интенсивного воздействия на клетку ряда повреждающих факторов. Однако каким образом эти повреждения трансформируются в митохондриальный апоптотический сигнал, пока в деталях не установлено. Тем не менее достоверно известно, что первым шагом на этом пути является выход из митохондрий («энергетических фабрик» клетки) цитохрома С – небольшого белка, содержащего комплекс с железом, который является компонентом митохондриальной дыхательной цепи (Green et al ., 2004).

Выход цитохрома С инициирует образование в цитоплазме клетки крупного белкового комплекса – апоптосомы , в которую, помимо самого митохондриального белка, входят прокаспаза-9 и белок АПАФ-1. Именно апоптосома и является настоящим «мафиозным боссом» митохондриального пути апоптоза, который дает сигнал киллерам-каспазам.

Речь идет об очень интересном явлении – самоактивации прокаспазы. Такое может произойти лишь в том случае, когда две молекулы этого белка, ориентированные определенным образом относительно друг друга, образуют димер. Именно такие уникальные пространственные условия, необходимые для димеризации и каталитической активации фермента, и предоставляет прокаспазе-9 апоптосома. Образовавшаяся в результате активная каспаза-9 расщепляет эффекторные каспазы (каспазу-3 и каспазу-7), а дальше все происходит по стандартной схеме апоптоза (Green et al ., 2004).

В случае рецептор-зависимого сигнального пути инициация апоптоза начинается с другого белкового комплекса, который образуется непосредственно на самом рецепторе смерти (Krammer et al ., 2007; Lavrik et al ., 2005).

К настоящему времени семейство таких рецепторов включает шесть представителей, в том числе рецептор такого широко известного белка, как фактор некроза опухоли. Все рецепторы смерти имеют одинаковый фрагмент из 80 аминокислот – так называемый домен смерти , расположенный на белковом «хвостике», выходящем в цитоплазму клетки. Такой же аминокислотный фрагмент имеет и белок-адаптер FADD, находящийся в цитоплазме клетки. Домены смерти могут взаимодействовать между собой с образованием устойчивой связи; FADD, в свою очередь, способен присоединять к себе прокаспазу.

Вся цепь событий по образованию апоптотического комплекса запускается лигандом смерти – белком-агонистом, способным специфично связываться с рецептором смерти. Синтез (и, соответственно, рост концентрации) таких молекул в клетке стимулируется каскадом процессов, возникающих в ответ на повреждение клетки. В результате, благодаря посредничеству FADD, на рецепторе образуется комплекс DISC (от англ. death-inducing signaling complex ), что в дословном переводе означает «сигнальный комплекс, инициирующий гибель». Именно в этом комплексе, как и в апоптосоме, происходит самоактивация прокаспазы-8, которая, в свою очередь, активирует эффекторные каспазы (каспазу-3 и каспазу-7) и инициирует клеточную гибель (Lavrik et al ., 2005; Krammer et al ., 2007). Собственно говоря, на этом различия между запуском двух сигнальных путей апоптоза заканчиваются.

Жить или не жить?

Нужно отметить, что любая клетка организма постоянно подвергается многочисленным повреждающим воздействиям, таким как радиационное излучение разных типов, разнообразные химические агенты, недостаток питательных веществ и т. п. К счастью для нас, для полноценной инициации клеточной гибели необходимо сравнительно сильное воздействие. На страже апоптотических путей стоят специфические механизмы, играющие роль «регулировщиков движения». Эту роль играют особые белки XIAPs и FLIP (Lavrik et al ., 2005).

Белки XIAPs ингибируют каспазу-9, которая активируется вследствие развертывания митохондриального пути. Связываясь с активным центром каспазы, они не дают «киллеру» выполнять свою работу. Однако с помощью этих белков клетке удается заблокировать лишь небольшое число активных каспаз. Если же концентрация активных каспаз превышает некий пороговый уровень, то белков XIAPs становится недостаточно, и процесс апоптоза остановить уже невозможно.

В случае рецепторзависимого сигнального пути апоптоза ингибитором активации прокаспазы-8 служит близкий ей по структуре белок FLIP. Молекулы этого белка также могут связываться с апоптическим комплексом DISC, конкурируя за «место» с молекулами прокаспазы, – при повышенной концентрации в цитоплазме они блокируют все возможные «места» такого связывания (Krammer et al ., 2007). В результате прокаспаза-8 не может быть активирована, и апоптоз не запускается.

Нарушения в уровне экспрессии как про- так и антиапоптотических белков может привести к серьезным отклонениям от обычного образа жизни клетки. Так, повышенный уровень экспрессии белков XIAPs и FLIP имеют многие раковые клетки. Выбрав курс на собст­венное бессмертие, в конечном счете они приводят к гибели все многоклеточное «сообщество» организма.

Итак, в отличие от голливудского детектива, в истории про апоптоз нет главного действующего лица: своевременное уничтожение поврежденных клеток и в итоге – жизнеспособность организма зависит от слаженной цепочки событий, в которой участвует множество различных белковых молекул.

И здесь очень важны количественные показатели, такие как концентрация. Сегодня изучением того, как влияет на инициацию и дальнейший ход апоптоза уровень содержания в клетке различных молекул, занимается одна из передовых областей современной науки – системная биология (Bentele et al ., 2004). Основной ее постулат заключается в том, что протекание сложных процессов внутри клетки можно понять, лишь учитывая максимально большое число клеточных параметров. Для этого на основе экспериментальных данных создается компьютерная модель, которая учитывает действие множества факторов. Полученные таким образом предсказания о ходе основных клеточных процессов могут использоваться в борьбе с препятствиями человечества на пути к долгой и здоровой жизни.

Литература

Lavrik I. N., Golks A., Krammer P. H. Caspases: Pharmacological manipulation of cell death // J. Clin. Invest. 2005. V. 115, N 10. P. 2665-2672.

Krammer P. H., Arnold R., Lavrik I. N. Life and death in peripheral T cells // Nat. Rev. Immunol. 2007. V. 7. P. 532-542.

Green D. R. and Kroemer G. The pathophysiology of mitochondrial cell death // Science. 2004. V. 305. P. 626-629.

» был впервые применен в 1972 г. Kerr, Wyllie et Currie для описания особой морфологической формы генетически запрограммированной гибели клеток, отличающейся от некроза.

Апоптоз является гомеостатическим механизмом, поддерживающим постоянство клеточной популяции в тканях, а также защитным механизмом при иммунных реакциях или при повреждении клеток при заболеваниях и при воздействии инфекционных агентов.

Апоптоз обусловлен процессами, которые вызывают активацию группы цистеиновых протеаз, называемых «каспазы», каскадный комплекс которых обуславливает в конечном итоге гибель клеток.

Поскольку клетки при апоптозе не освобождают свое содержимое в окружающие ткани и быстро фагоцитируются макрофагами, воспалительная реакция обычно отсутствует. Следует отметить, что пикноз и кариорексис не являются исключительным признаком апоптоза и могут быть частью цитоморфологического спектра при некрозе.

Ионизирующее излучение , химиопрепараты приводят к повреждению ДНК в клетках, что вызывает их гибель посредством в53-зависимого пути. Воздействие воспалительных агентов в малых дозах (гипоксия, радиация, повышение температуры) индуцирует апоптоз, вызывая некроз при воздействии в больших дозах.

При некрозе потеря клеточной мембраны приводит к освобождению цитоплазматического содержимого в окружающие ткани, посылая сигналы хемотаксиса, приводящего к клеточному воспалению. Хемотаксические факторы подразделяются на две категории: короткого и дальнего действия, формирующие навигационные сигналы в локальной области тканей, приводящие к миграции макрофагов из циркуляции.

Кроме того, радикально изменяется плазматическая мембрана апоптотических клеток: изменяется ее проницаемость, топология липидов с потерей фосфолипидной асимметрии, окисления и восстановления анионных фосфолипидов, фосфатидилсеринов с выходом их из клетки.

Изменяется также расположение углеводов на мембране, и различные белки (включая кальретикулин, аннексин 1), большие субъединицы инициирующего трансляцию фактора 3, ДНК, переносятся к поверхности апоптотических клеток и взаимодействуют (прямо или косвенно) с фагоцитами.

Такое изменение расположения макромолекул на поверхности апоптотических клеток является ключевым моментом во взаимодействии с фагоцитами. В процессе апоптоза происходит также потеря ингибиторных молекул (CD31 и CD47) с поверхности клеток (механизм «не ешь меня») с последующим взаимодействием апоптотических клеток с фагоцитами. Ниже схематически представлено большинство молекул, вовлеченных во взаимодействие между фагоцитами и апоптотичес-кими клетками (рис. 6).

Рис. 6. Молекулы, вовлеченные во взаимодействие между фагоцитами и апоптотическими клетками

Примечание: ABCA, АТФ-связывающиий кассетный транспортер A1; ACAMPs, апоптотические клеточно-связанные молекулярные партнеры; ASGP-R, рецептор асиалогликопротеина; 2GPI, 2 гликопротеин1; 2GPI-R, 2GPI-рецептор; интегрины, включая CR3 иCR4 ; BAI1, ангиогенный мозгово-специфический ингибитор; C1q, первый компонент комплемента; CHO, карбогидраты; CRP, С-реактивный белок; CRT, кальретикулин; CH3CR1, рецептор фракталькина; Del-1, эндотелиальный развивающий локус-1; FKN, фракталькин; GA, G-протеин-связанный LPC рецептор; Gas-6, фактор остановки роста-6; iC3b, инактивирующий комплемент фрагмент C3b; ICAM-3 (CD50), молекула-3 внутриклеточной адгезии; Lox-1, рецептор окисленного липопротеина низкой плотности; LPC, лизофосфатидил холин; MER, миелоидная эпителиальная репродуктивная тирозин киназа; MFG-E8, глобулин молочного жира эпидермального ростового фактора-8; Ox-PL, окисленный фосфолипид; P2Y2, G-протеин-связанный ядерный рецептор; PE, фосфатидилэтаноламин; PS, фосфатидилсерин; SAP, сывороточный амилоидный протеин; SHPS-1, гомолог2 доменсодержащего протеина субстрата-1 тирозин киназы; SR-AI, удаляющий рецептор (мусорщик) AI; SR-BI, удаляющий рецептор BI; TIM-1/4, молекулы Т-клеточного иммуноглобулина и муцин-содержащего домена; TSP-1, тромбоспондин-1.

Изменения клеток при апоптозе

Для клетки, подвергшейся апоптозу, характерно следующее.

Сжатие клетки. Клетка уменьшается в размерах, цитоплазма уплотняется; органеллы, которые выглядят нормальными, располагаются более компактно. Предполагается, что нарушение формы и объема клетки происходит в результате активации в апоптотических клетках трансглютаминазы.

Этот фермент вызывает прогрессивное образование перекрестных связей в цитоплазматических белках, что приводит к формированию своеобразной оболочки под клеточной мембраной.

Конденсация хроматина

Это наиболее характерное проявление апоптоза. Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы разной формы и размеров.

Ядро может разрываться на несколько фрагментов. Конденсация хроматина обусловлена расщеплением ядерной ДНК в местах, связывающих отдельные нуклеосомы, что приводит к образованию большого количества фрагментов, в которых число пар оснований составляет 180-200.

При электрофорезе фрагменты дают характерную картину лестницы (клеваж ДНК). Фрагментация ДНК в нуклеосомах происходит под действием кальций чувствительной эндонуклеазы.

Эндонуклеаза в некоторых клетках находится постоянно; в тимоцитах она активируется появлением в цитоплазме свободного кальция, а в других клетках синтезируется перед началом апоптоза.

Формирование апоптотических телец

В апоптотической клетке первоначально формируются глубокие впячивания поверхности с образованием полостей, что приводит к фрагментации клетки и формированию окруженных мембраной апоптотических телец, состоящих из цитоплазмы и плотно расположенных органелл с фрагментами ядра или без таковых.

Апоптотические тельца быстро разрушаются в лизосомах макрофагов, а окружающие клетки либо мигрируют, либо делятся, чтобы заполнить освободившееся после гибели клетки пространство. Фагоцитоз апоптотических телец макрофагами или другими клетками активируется рецепторами на данных клетках: они захватывают и поглощают эти тельца.

В табл. 5 приводятся сравнительные данные по морфологическим изменениям при апоптозе и некрозе

Таблица 5. Морфологические изменения при апоптозе и некрозе

Геном человека содержит около 13 каспаз, их количество зависит от генетического полиморфизма. Каспазы присутствуют в цитоплазме в виде проэнзимов и активируются до полностью функциональных протеаз путем расщепления энзима на малую и большую субъединицы и дальнейшего отщепления от их N-концевых доменов.

Затем субъединицы собираются в тетрамер с двумя активными центрами. Расщепление прокаспаз могут осуществлять различные протеазы, в том числе и другие каспазы. По выполняемой каспазами функции их разделяют на две группы: инициаторные каспазы (8, 9 и 10) и эффекторные каспазы (3, 6, и 7). После того, как каспазы из первой группы активируют эффекторные каспазы, процесс апоптоза оказывается необратимым.

Расщепление каспазами ряда ключевых субстратов приводит к фрагментации ДНК и деструкции клетки. Для активации каспаз существует несколько путей, два из которых наиболее изучены и привлекают большое внимание в последнее время. Эти два пути апоптоза обычно обозначаются как внешний и внутренний путь.

Ниже представлено схематическое изображение разных путей апоптоза


Рис. 7. Схемы внешнего и внутреннего путей апоптоза, а также перфорин/гранзимного пути, который действует по каспазонезависимому пути. Результаты всех путей приводят к цитоморфологическим изменениям, включая сморщивание клеток, конденсацию хроматина, образование цитоплазматических и апоптотических телец, что в итоге приводит к фагоцитозу апоптотических телец

Внутренний путь апоптоза (intrisic pathway)

При активации каспаз по внутреннему пути (intrinsic pathway) центром инициации апоптоза являются митохондрии. Стимуляция внутреннего пути продуцирует внутриклеточные сигналы, которые могут действовать как положительно, так и отрицательно.

Негативные сигналы включают отсутствие факторов роста, гормонов и цитокинов, что ведет к нарушениям супрессии программы клеточной смерти, активируя апоптоз. Другие положительные стимулы включают радиацию, токсины, гипоксию, гипертермию, вирусные инфекции и свободные радикалы.

Все эти стимулы вызывают изменения внутренней мембраны митохондрий, результатом чего является открытие пор митохондриальной проницаемости, потеря митохондриального мембранного потенциала и освобождение двух наиболее больших групп проапоптотических протеинов. В митохондрии сходятся многие сигналы, вызывающие повреждение ДНК, нарушения микротрубочек, факторов роста, что вызывает освобождение из этих органелл в цитозол цитохрома с и других апоптогенных белков.

В цитозоле цитохром с связывается с белком, активирующим каспазы, апоптотическим протеазе -активирующим фактором 1 (Apafl). Apafl играет роль арматуры, на которой происходит аутокаталитический процессинг каспазы-9. В результате зависимого от гидролиза аденозинтрифосфата (АТФ) конформационного изменения Apaf1 приобретает способность связывать цитохром с.

Связав цитохром с, Apafl претерпевает дальнейшее конформационное изменение, способствующее его олигомеризации в гептаметрический комплекс и открывающее доступ каспазоизменяющего домена (CARD) Apafl для прокаспазы-9, которая также содержит CARD-домен.

В результате формируется мультипротеиновая структура, известная как «апоптосома». Связь Apafl с прокаспазой-9 обусловлена CARDs посредством гомотипического соединения (CARD-CARD). Активация апоптосомо-ассоциированной протеазы каспазы-9 инициирует протеолитический каскад, который активирует клеваж каспазы-9 и активирует прокаспазу-3.

Другая группа проапоптотических протеинов, апоптоз-индуцирующих факторов (AIF), эндонуклеазы G и CAD (каспазоактивируемая ДНКаза), освобождаются из митохондрий в процессе апоптоза. AIF фрагментирует ДНК и обуславливает конденсацию периферического ядерного хроматина.

Эндонуклеаза G перемещается в ядро, где расщепляет ядерный хроматин, образуя фрагменты олигонуклеосомальной ДНК. AIF и эндонуклеаза G действуют по каспазонезависимому пути. CAD последовательно освобождается из митохондрий и перемещается в ядро, где приводит к фрагментации олигонуклеосомальной ДНК и распространенной конденсации хроматина.

Контроль и регулирование данного митохондриального пути осуществляется белками семейства Bcl-2. Протеин гена-супрессора р53 играет критическую роль в регуляции белков семейства Bcl-2. Семейство белков Bcl-2 контролирует проницаемость митохондриальной мембраны и может действовать проапоптотически или антиапоптотически. Хотя геном человека содержит 25 членов этого семейства, только 6 из них являются антиапоптотическими.

Семейство белков Bcl-2 можно разделить на три основные группы:

1. Антиапоптогенные молекулы, такие как Bcl-2, Bcl-XL, Mcl-1, Bcl-W, Bfl-1, Bcl-B. Все они обладают антиапоптозной активностью, имеют четыре группы гомологичных последовательностей - ВН1, ВН2, ВН3 и ВН4 домены, хотя у некоторых из них домен ВН4 отсутствует. Эти молекулы представляют мембранные белки, находящиеся в митохондрии, эндоплазматическом ретикулуме и в ядерной мембране.
2. Проапоптогенные молекулы Bax, Bad, Bak, Mtd(Bok) и Diva имеют гомологичные последовательности ВН1, ВН2 и ВН3, а ВН4 домен у них отсутствует.
3. Проапоптогенные белки, содержащие только ВН3 домен: Bik, Bid, Bim, Hrk (DR5), Blk, Bnip3, Bnip3L.

Они в основном локализованы в цитозоле или связаны с цитоскелетом.
ВН1 -3 домены играют важную роль в формировании гетеро-и гомодимеров между проапоптогенными и антиапоптогенными членами семейства, и клеточные уровни этих димеров играют определяющую роль в судьбе клетки.

Гетеродимеризация происходит путем взаимодействия ВН3 домена проапоптогенного белка с гидрофобным комплексом, образованным ВН1, ВН2 и ВН3 доменами антиапоптогенных белков.
Домены ВН1, ВН2 и ВН4 необходимы для антиапоптогенной активности белка, в то время как ВН3 домен необходим для протоапоптогенной активности.

Функция белка Bcl-2 может быть дополнена возможностью посттрансляционной модификации с помощью фосфорилирования. Близкий ген, Bcl-x кодирует два белка, различающихся сплайсингом РНК, Bcl-xL и Bcl-xS. Так же как Bcl-2, белок Bcl-xL ингибирует апоптоз, в то время как белок Bcl-xS оказывает негативный эффект на функцию Bcl-2 и Bcl-xL.

Повышенная экспрессия генов этих белков может приводить к устойчивости к большинству вызывающих апоптоз стимулов, так как к этим белкам сходится множество путей апоптоза. Гиперэкспрессия некоторых антиапоптотических протеинов доказана при различных гематологических новообразованиях. Например, повышение уровня белка Bcl-2 в результате t(14; 18), вовлекающей ген BCL2, наблюдается в 80-90% случаев фолликулярной неходжкинской лимфомы.


Рис. 8. Схема апоптоза с участием всех ключевых факторов

Примерно 1/3 пациентов с диффузной В-крупноклеточной лимфомой имеют патологическое повышение уровня Bcl-2 (часто в ассоциации с t(14;18) или амплификацией гена), что коррелирует со снижением продолжительности жизни, несмотря на проведение комбинированной химиотерапии с включением ритуксимаба (анти-CD20 антител).

Большинство пациентов с ХЛЛ содержат повышенный уровень Bcl-2, ассоциированный с гипометилированием гена BCL2. В противоположность генетическим изменениям, активирующим антиапоптотические гены BCL2 и MCL1, при лейкозах и лимфомах с нестабильными микросателлитами часто происходят мутации, инактивирующие проапоптотический ген BAX.

Баланс между проапоптотическими и антиапоптотическими регуляторами апоптоза является основным механизмом, обеспечивая выживаемость длительно живущих клеток и замену ими короткоживущих клеток в различных тканях, включая костный мозг, тимус и периферические лимфоидные ткани. Дисбаланс этих протеинов в конечном итоге приводит к избирательным преимуществам в выживании клеток, что приводит к развитию новообразований.

Номенклатура основных белков внутреннего пути апоптоза приведена в табл. 6.

Таблица 6. Номенклатура основных белков внутреннего пути апоптоза

Внешний путь апоптоза (extrinsic pathway)

При внешнем пути апоптоза вначале происходит трансмембранное освобождение посредством фактора некроза опухоли (ФНО) рецептора смерти. Гибель клеток посредством внешнего пути апоптоза, в частности, химиорезистентных клеток, часто происходит при нарушениях по внутреннему пути, что дает преимущества при воздействии цитостатиков, ионизирующего излучения при выключении апоптоза клеток по митохондриальному пути.

Семейство цитокинов ФНО состоит у человека из 18 членов. Некоторые из рецепторов семейства ФНО передают сигналы преимущественно для выживания клеток путем связывания внутриклеточного опухолевого рецептор-ассоциированного фактора (TRAF), семейства адаптерных белков. Блокирование этих рецепторов представляет новую стратегию в терапии лимфоидных опухолей. Другие члены семейства ФНО напрямую включают апопотоз, в частности, те, которые содержат «домен смерти» в их цитозольной части.

Стратегия для применения вызывающих апоптоз лиганд семейства ФНО включает: рекомбинантные лиганды, экспрессируемые только экстрацеллюлярной частью мембранных протеинов; моноклональные антитела, которые связывают рецепторы и включают апоптоз.

Подгруппа рецепторов семейства ФНО имеет цитоплазматический домен, состоящий из 80 аминокислот, именуемый «домен смерти» (DD), который при внутриклеточном взаимодействии с белками-адаптерами привязывает эти рецепторы к специфическим каспазам. Домен смерти играет основную роль в передаче сигнала смерти с поверхности клетки по внутриклеточному пути.

Связавшись с лигандом, рецепторы семейства ФНО образуют кластеры цитозольного DD на мембране, изменяя каспазосвязанный адаптерный протеин. Образующееся соединение адаптерного Fas-ассоциированного протеина с доменом смерти (FADD) состоит из DD и содержащего эффектор домена смерти (DED). DED в составе FADD связывает DED-содержащие прокаспазы (в частности, каспазы 8 и 10), формируя «смерть-индуцирующий сигнальный комплекс» (DISC), в результате чего происходит активация каспаз.

После активации каспазы-8 включается заключительная фаза апоптоза. Апоптоз, обусловленный рецептором смерти, может ингибироваться протеином c-FLIP (протеин, ингибирующий FLICE), который связывается с FADD и каспазой-8, делая их неэффективными.

Ниже представлена схема пути активации каспаз.


Рис. 9. Пути активации каспаз

Наличие дополнительных путей апоптоза включает:

1) путь апоптоза, индуцированный цитотоксическими лимфоцитами (CTL) и натуральными киллерами (NK), при котором сериновая протеаза гранзим В проникает внутрь клетки;
2) путь стресса эндоплазматического ретикулума (ER) с вовлечением каспазы-12;
3) р53-индуцированный путь, опосредoванный р53-индуцированным доменом смерти (PIDD), который связывает адапторный протеин ICH-1/протеин-3 (CED-3) домена смерти с доменом смерти, как активатором каспазы-2.

Номенклатура основных белков внешнего пути апоптоза приведена в табл. 7.

Таблица 7. Номенклатура основных белков внешнего пути апоптоза

Перфорин-гранзимный путь апоптоза (perforin-granzime pathway)

Цитотоксические Т-лимфоциты способны уничтожать клетки-мишени посредством внутреннего пути и FasL/FasR взаимодействия, что является основным способом апоптоза, вызываемого цитотоксическими лимфоцитами. Но они способны также осуществлять свой цитотоксический эффект в отношении опухолевых или инфицированных вирусом клеток посредством нового пути. Он осуществляется посредством секреции молекул перфорина.

Полимеризуясь, перфорин образует в цитоплазматической мембране клетки-мишени трансмембранные каналы с последующим проникновением в клетки ФНО-в и гранзимов А и В - смеси сериновых протеаз. Гранзим В активирует прокаспазу-10 и может расщеплять ингибитор каспазактивируемой ДНКазы, а также использовать митохондриальный путь для амплификации сигнала смерти и вызывать освобождение цитохрома с.

Кроме того, гранзим В может напрямую активизировать каспазу-3, что может индуцировать заключительную фазу апоптоза. Таким образом, митохондриаль-ный путь и прямая активация каспазы-3 являются основными путями индуцированного гранзимом В уничтожения клеток.

Гранзим А также вызывает апоптоз, активируя каспазонезависимый путь апоптоза. Он расщепляет посредством активации ДНКазы продукт гена тумор-супрессора, вызывая апоптоз опухолевых клеток. Инактивация этого белка ведет к апоптозу вследствие блокирования восстановления ДНК и структуры хроматина.

Внешний и внутренний пути апоптоза заканчиваются в экзекутивной (исполнительной) фазе. Эта фаза начинается с активации экзекутивных («казнящих») каспаз, которые активируют цитоплазматические эндонуклеазы с деградацией ядерного материала, и активируют протеазы с последующей деградацией ядерных протеинов и протеинов цитоскелета. Каспаза-3 является наиболее важной экзекутивной каспазой и может активироваться любой каспазой (каспаза-8, каспаза-9 или каспаза-10).

Номенклатура основных белков экзекутивного пути апоптоза представлена в табл. 8.

Таблица 8. Номенклатура основных белков экзекутивного пути апоптоза

Е.В. Зуховицкая, А.Т. Фиясь

1) Рецепторный. Осуществляется с помощью «рецепторов смерти» при активирующем взаимодействии с соответствующими лигандами, большинство из которых относится к суперсемейству фактора некроза опухолей. Взаимодействие рецептора с лигандом приводит к активации адапторных белков, ассоциированных с «доменами смерти» (FADD - Fas-associated death domain, TRADD - TNF-R-associated death domain), и прокаспазы 8, продукт которой - каспаза 8 (инициаторная) активирует каспазу 3 (эффекторную), что, в свою очередь, обусловливает активацию эндонуклеаз, фрагментирующих ДНК.

2) Митохондриальный. Участие митохондрий в апоптозе обеспечивается присутствием в их матриксе и межмембранном пространстве большого количества биологически активных веществ (цитохрома С (Cyt С); прокаспаз 2, 3, 9; апоптозиндуцирующего фактора (AIF), обладающих выраженным апоптогенным действием. Фактором активации апоптоза является выход данных веществ в цитоплазму при снижении трансмембранного потенциала митохондрий вследствие открытия гигантских митохондриальных пор (выполняют роль Ca 2 +-, рН-, потенциал-, НАДФ2Н/НАДФ+- и редоксзависимых каналов) и повышения проницаемости митохондриальных мембран. К раскрытию пор приводят истощение в клетках восстановленного глутатиона, НАДФН, АТФ и АДФ, образование активных форм кислорода, разобщение окислительного фосфорилирования, увеличение содержания Ca 2 + в цитоплазме. Поступление межмембранных белков и активация апоптоза возможны также при разрыве наружной мембраны митохондрий вследствие гиперполяризации внутренней мембраны.

3) р53-опосредованный. p53 - многофункциональный белок, играющий важную роль в мониторинге сигналов о состоянии клетки, целостности ее генома, активности систем ДНК-репарации. Повреждение ДНК ведет к накоплению белка р53 в клетке. Это определяет остановку клеточного цикла в фазах G 1 и G 2 , предотвращает репликацию, активирует синтез и репарацию ДНК, а следовательно, создает условия для восстановления нативной структуры ДНК, препятствует появлению мутантных и анеуплоидных клеток в организме. В случае если имеется недостаточность систем ДНК-репарации и повреждения ДНК сохраняются, клетка подвергается апоптозу. В частности, белок р53 способен индуцировать транскрипцию таких апоптогенных факторов, как Bax, Fas- рецептор, DR-5 и др.

4) Перфорин-гранзимовый. Цитотоксические Т-лимфоциты (Т-киллеры) вызывают апоптоз клеток-мишеней (например, инфицированных клеток) с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клеткимишени трансмембранные каналы, по которым внутрь клетки поступают секретируемые Т-киллером гранзимы (фрагментины) - смесь сериновых протеаз. Основным компонентом этой смеси является гранзим В - протеолитический фермент, активирующий каспазу 3.

Значение белков-регуляторов апоптоза в развитии организма и патологических процессах

    Вcl-2 требуется для поддержания жизнеспособности лимфоцитов, меланоцитов, эпителия кишечника и клеток почек во время развития эмбриона.

    Вcl-x необходим для ингибирования смерти клеток в эмбриогенезе, особенно в нервной системе.

    Bax необходим для апоптоза тимоцитов и поддержания жизнеспособности сперматозоидов во время их развития.

    р53 является геном супрессии опухолей, поэтому в эмбриогенезе особой роли не играет, но обязательно необходим для супрессии опухолевого роста.

    Усиленный синтез белка, кодируемого bcl-2 геном, приводит к подавлению апоптоза и, соответственно, развитию опухолей; данный феномен обнаружен в клетках В-клеточной фолликулярной лимфомы.

    При лимфопролиферативных заболеваниях и похожей на системную красную волчанку болезни у мышей наблюдается нарушение функции Fas-лиганда или Fas-рецептора.

    Повышенный синтез Fas-лиганда предупреждает отторжение трансплантата.

Апоптоз является частью патологического процесса при инфицировании клетки аденовирусами, бакуловирусами, ВИЧ и вирусами гриппа.

Ингибирование апоптоза в клетке-хозяине наблюдается при персистировании инфекции, в латентном периоде, а при усиленной репликации аденовирусов, бакуловирусов, возможно герпесвирусов, вируса Эпштейн-Барра и ВИЧ наблюдается активация апоптоза в клетках иммунной системы, что способствует распространению вируса.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

1 стадия стадия инициации (индукции) .

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

    внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

    трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

Трансмембранные стимулы подразделяются на:

    «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

    «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

    Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

    реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

    блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

    адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

    цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

    гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

    репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

    экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадия стадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

    цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

    белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

    ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадия стадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

    поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

    поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

    селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.