Основные понятия кинематики

Кинематика

Глава 1. Механика

Любое физическое явление или процесс в окружающем нас материальном мире представляет собой закономерный ряд изменений, происходящих во времени и пространстве. Механическое движение, то есть изменение положения данного тела (или его частей) относительно других тел, – это простейший вид физического процесса. Механическое движение тел изучается в разделе физики, который называется механикой . Основная задача механики – определить положение тела в любой момент времени .

Одна из основных частей механики, которая называется кинематикой , рассматривает движение тел без выяснения причин этого движения. Кинематика отвечает на вопрос: как движется тело? Другой важной частью механики является динамика , которая рассматривает действе одних тел на другие как причину движения. Динамика отвечает на вопрос: почему тело движется именно так, а не иначе?

Механика – одна из самых древних наук. Определенные познания в этой области были известны задолго до новой эры (Аристотель (IV век до н. э.), Архимед (III в. до н.э.)). Однако, качественная формулировка законов механики началась только в XVII веке н. э., когда Г. Галилей открыл кинематический закон сложения скоростей и установил законы свободного падения тел. Через несколько десятилетий после Галилея великий И. Ньютон (1643–1727) сформулировал основные законы динамики.

В механике Ньютона движение тел рассматривается при скоростях, много меньше скорости света в пустоте. Ее называют классической или ньютоновской механикой в отличие от релятивистской механики, созданной в начале XX века главным образом благодаря работам А. Эйнштейна (1879–1956).

В релятивистской механике движение тел рассматривается при скоростях, близких к скорости света. Классическая механика Ньютона является предельным случаем релятивистской при υ << c .

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно . Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета .

Система координат, связанная с телом отсчета, и часы для отсчета времени образуют систему отсчета , позволяющую определять положение движущегося тела в любой момент времени.

В Международной системе единиц (СИ) за единицу длины принят метр , а за единицу времени –секунда .



Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой . Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным . Поступательно движутся, например, кабины в аттракционе «Колесо обозрения», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Тело, размерами которого в данных условиях можно пренебречь, называется материальной точкой .

Понятие материальной точки играет важную роль в механике.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела .

Положение материальной точки в пространстве в любой момент времени (закон движения ) можно определять либо с помощью зависимости координат от времени x = x (t ), y = y (t ), z = z (t )(координатный способ), либо при помощи зависимости от времени радиус-вектора (векторный способ), проведенного из начала координат до данной точки (рис. 1.1.1).

Вопрос 1.Радиус-вектор.Вектор перемещения.

- радиус-вектор - это вектор, проведенный от точки отсчета О к рассматриваемой точке М.

- перемещение (или изменение радиус-вектора) – это вектор, соединяющий начало и конец траектории.

радиус-вектор в прямоугольной системе декартовых координат:

Где -называют координатами точки.

Вопрос 2.Скорость перемещения. Средняя и мгновенная скорости.

Скорость перемещения (вектор)-показывает, как изменяется перемещение в единицу времени.

Средняя: Мгновенная:

Мгновенная скорость всегда направлена по касательной к траектории,

а средняя – совпадает с вектором перемещения.

Проекция: Модуль:

Вопрос 3.Путь.Его связь с модулем скорости.

S путь – это длина траектории (скалярная величина, > 0).

S-площадь фигуры, ограниченной кривой v(t) и прямыми t 1 и t 2 .

Вопрос 4.Ускорение.Модуль ускорения.

Ускорение - по смыслу – показывает, как изменяется скорость в единицу времени.

Проекция: Модуль: Среднее значение:

Вопрос 5.Неравномерное движение точки по криволинейной траектории.

Если точка движется по криволинейной траектории, то целесообразно разложить ускорение на составляющие, одна из которых направлена по касательной и называется тангенциальным или касательным ускорением , а другая направлена по нормали к касательной, т.е. по радиусу кривизны, к центру кривизны и называется нормальным ускорением.

Характеризует изменение скорости по направлению, – по величине.

Где r - радиус кривизны.

У точки, движущейся по криволинейной траектории, всегда есть нормальное ускорение, а тангенциальное – только тогда, когда скорость изменяется по величине.

(2, 3)Тема 2. КИНЕМАТИЧНСКИЕ УРАВНЕНИЯ ДВИЖЕНИЯ.

Вопрос 1.Получить кинематические уравнения движения r(t) и v(t).

Два дифференциальных и связанных с ними двух интегральных векторных уравнениях:

и - кинематические уравнения равнопеременного точки при .

Вопрос 2. Получить кинематические уравнения движения x(t),y(t),v x (t) и v y (t), для брошенного тела.

Вопрос 3. Получить кинемат. уравнения движения x(t),y(t),v x (t) и v y (t), для тела, брошенного под углом.

Вопрос 4. Получить уравнение движения для тела, брошенного под углом.

Тема 3. КИНЕМАТИКА ВРАЩЕНИЯ.

Вопрос 1.Кинематические характеристики вращательного движения.

угловое перемещение - угол поворота радиус-вектора.

угловая скорость - показывает, как изменяется угол поворота радиус-вектора.

угловое ускорение - показывает, как изменяется угловая скорость за единицу времени.

Вопрос 2. Связь между линейными и угловыми характеристиками движения точки

Вопрос 3.Получите кинематическое уравнения w (t) и ф (t).

То кинематические уравнения после интегрирования примут более простой вид: - кин. уравнения равноускор.(+) и равнозамедл.(-) вращательного движения.

(4, 5, 6) Тема 4. КИНЕМАТИКА АТТ.

Вопрос 1.Определение АТТ. Поступательные и вращательные движения АТТ.

АТТ называется тело, деформациями которого можно пренебречь в условиях данной задачи.

Все движения АТТ можно разложить на поступательное и вращательное, относительно некоторой мгновенной оси. Поступательное движение – это движение, при котором прямая, проведенная через любые две точки тела, перемещается параллельно самой себе. При поступательном движении все точки тела совершают одинаковые перемещения.Вращательное движение – это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

В качестве кинематического уравнения вращательного движения АТТ достаточно знать уравнение j (t) для угла поворота радиус-вектора, проведенного от оси вращения к какой-либо точке тела (если ось неподвижна). Т.е., принципиально кинематические уравнения движения для точки и АТТ не отличаются.

Тема 5. ЗАКОНЫ НЬЮТОНА.

Тема 6. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА.

Тема 7. РАБОТА. МОЩНОСТЬ. ЭНЕРГИЯ.

Вопрос 7. Законы сохранения применительно к абсолютно упругому удару двух шаров.

Абсолютно упругий удар – это такой удар, при котором сохраняется кинетическая энергия всей системы.

Тема 10. СИЛОВЫЕ ПОЛЯ

Вопрос 3. Сокращение длины.

l 0 – длина стержня в системе, относительно которой он покоится (в нашем случае в К ), l – длина этого отрезка в системе, относительно которой он движется (К¢ ). т.к. и найдем связь между l и l 0 : .

Таким образом, из СТО следует, что размеры движущихся тел должны сокращаться в направлении их движения, но реального сокращения нет, т.к. все ИСО равноправны.

Вопрос 2.Идеальный газ

Простейшей моделью реальных газов является идеальный газ . С ма кро скопической точки зрения – это газ, для которого выполняются газовые законы (pV = const, p/T = const, V/T = const ). С ми кро скопической точки зрения – это газ, для которого можно пренебречь: 1) взаимодействием молекул между собой и 2) собственным объемом молекул газа по сравнению с объемом сосуда, в котором находится газ.

Уравнение, связывающее между собой параметры состояния, называется уравнением состояния газа. Одно из простейших уравнений состояния - это

( ; ; ) уравнение Менделеева – Клапейрона.

(n – концентрация, k – постоянная Больцмана) - уравнение состояния идеального газа в другой форме.

Тема 15. ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ

Вопрос 1. Основные понятия. Обратимые и необратимые процессы.

Обратимый процесс - это такой процесс перехода системы из состояния А в состояние В , при котором возможен обратный переход от В к А через те же промежуточные состояния и при этом в окружающих телах не происходит никаких изменений. Система называется изолированной , если она не обменивается энергией с окружающей средой. На графике состояния обозначаются точками, а процессы – линиями.

Величины, которые зависят только от состояния системы и не зависят от процессов, посредством которых система пришла в данное состояние, называются функциями состояния . Величины, значения которых в данном состоянии зависят от предшествующих процессов, называются функциями процессов - это теплота Q и работа A ,их изменение обозначают часто как dQ, dA или . (d - греческая буква - дельта)

Работа и теплота – это две формы передачи энергии от одних тел к другим. При совершении работы меняется относительное расположение тел или частей тела. Передача энергии в виде теплоты осуществляется при контакте тел – за счет теплового движения молекул.

К внутренней энергии относят: 1)кинетическую энергию теплового движения молекул (но не кинетическую энергию всей системы в целом), 2)потенциальную энергию взаимодействия молекул между собой, 3)кинетическую и потенциальную энергию колебательного движения атомов в молекуле, 4)энергию связи электронов с ядром в атоме, 5)энергию взаимодействия протонов и нейтронов внутри ядра атома. Эти энергии по величине очень сильно отличаются друг от друга, например, энергия теплового движения молекул при 300 К ~ 0,04 эВ, энергия связи электрона в атоме ~ 20-50 эВ, а энергия взаимодействия нуклонов в ядре ~10 МэВ. Поэтому эти взаимодействия рассматривают по отдельности.

Внутренняя энергия идеального газа – это кинетическая энергия теплового движения его молекул. Она зависит только от температуры газа. Ее изменение имеет одинаковое выражение для любых процессов в идеальных газах и зависит только от начальной и конечной температур газа. - внутренняя энергия идеального газа.

Тема 16.

Вопрос 1. Энтропия

II начало термодинамики, как и I начало, является обобщением большого числа опытных фактов и имеет несколько формулировок.

Введем сначала понятие «энтропия», которое играет ключевую роль в термодинамике. Энтропия - S – одна из важнейших термодинамических функций, характеризующая состояние или возможные изменения состояния вещества – это многогранное понятие.

1)Энтропия – это функция состояния . Введение таких величин ценно тем, что при любых процессах изменение функции состояния одинаково, поэтому сложный реальный процесс можно заменить «выдуманными» простыми процессами. Например, реальный процесс перехода системы из состояния А в состояние В (см. рис.) можно заменить на два процесса: изохорический А®С и изобарический С®В.

Энтропия определяется следующим образом.

Для обратимых процессов в идеальных газах можно получить формулы для вычисления энтропии в различных процессах. Выразим dQ из I начала и подставим в выражение для dS .

общее выражение для изменения энтропии в обратимых процессах.

Интегрируя, получим выражения для изменения энтропии в различных изопроцессах в идеальных газах.

Вопрос 2,3,4.изобарический, изохорический, изотермический

Во всех расчетах энтропии имеет значение только разность энтропий конечного и начального состояний системы

2)Энтропия мера рассеяния энергии.

запишем I начало термодинамики для обратимого изотермического процесса, учитывая, что dQ=T×dS и выразим работу
термодинамическая функция называется свободной энергией величина называется связанной энергией
Из формул можно сделать вывод, что в работу можно перевести не весь запас внутренней энергии системы U . Часть энергии TS нельзя перевести в работу, она рассеивается в окружающей среде. И эта «связанная» энергия тем больше, чем больше энтропия системы. Следовательно, энтропию можно назвать мерой рассеяния энергии.

3)Энтропия – мера беспорядка системы

Введем понятие термодинамической вероятности.Пусть мы имеет ящик, разделенный на n отсеков. В ящике по всем отсекам свободно перемещается N молекул. В первом отсеке окажется N 1 молекул, во втором отсеке N 2 молекул,…,

в n -ом отсеке - N n молекул. Число способов w , которыми можно распределить N молекул по n состояниям (отсекам) называется термодинамической вероятностью . Иначе говоря, термодинамическая вероятность показывает, сколькими микро распределениями можно получить данное макро распределение Она вычисляется по формуле:

Для примера вычисления w рассмотрим систему, состоящую из трех молекул 1, 2 и 3, которые свободно перемещаются в ящике с тремя отсеками.

В данном примере N = 3 (три молекулы) и n = 3 (три отсека), молекулы считаются различимыми.

В первом случае макрораспределение – это равномерное распределение молекул по отсекам, оно может осуществиться 6-ью микрораспределениями. Вероятность такого распределение самая большая. Равномерное распределение можно назвать «беспорядком» (по аналогии с разбросанными вещами в комнате) В последнем случае, когда молекулы собираются только в одном отсеке вероятность наименьшая. Проще говоря, из повседневных наблюдений мы знаем, что молекулы воздуха более или менее равномерно распределяются в помещении, и практически совершенно невероятно, чтобы все молекулы собрались в одном углу комнаты. Однако теоретически такая вероятность существует.

Больцман постулировал, что энтропия прямо пропорциональна натуральному логарифму термодинамической вероятности:

Следовательно, энтропию можно назвать мерой беспорядка системы.

Вопрос 6.Теперь мы можем сформулировать II начало термодинамики .

1)При любых процессах, происходящих в теплоизолированной системе, энтропия системы не может убывать:
Знак «=» относится к обратимым процессам, знак «>» - к необратимым (реальным) процессам. В незамкнутых системах энтропия может меняться любым образом.
Иначе говоря, в замкнутых реальных системах возможны только те процессы, при которых энтропия возрастает. Энтропия связана с термодинамической вероятностью, следовательно, ее увеличение в замкнутых системах означает рост «беспорядка» системы, т.е. молекулы стремятся прийти в одинаковое энергетическое состояние и с течением времени все молекулы должны иметь одинаковую энергию. Отсюда был сделан вывод о стремлении нашей Вселенной к тепловой смерти. «Энтропия мира стремится к максимуму» (Клаузиус). Так как законы термодинамики выведены на основе человеческого опыта в масштабах Земли, то вопрос об их применимости в масштабах Вселенной остается открытым
3) «Невозможно построить вечный двигатель второго рода, т.е. такую периодически действующую машину, действие которой состояло бы только в поднятии груза и охлаждении теплового резервуара» (Томсон, Планк)
Обязательно должно быть еще тело, которому «придется» отдать часть теплоты. Просто отнимать тепло от некоторого тела и превращать его в работу невозможно потому, что такой процесс сопровождается уменьшением энтропии нагревателя. Следовательно, нужно еще одно тело – холодильник, энтропия которого будет увеличиваться, чтобы DS = 0 . Т.е. у нагревателя забирается теплота, за счет этого может быть совершена работа, но часть теплоты «теряется», т.е. передается холодильнику.

Вопрос 7. КРУГОВЫЕ ПРОЦЕССЫ (ЦИКЛЫ)

Круговым процессом или циклом называется такой процесс, при котором система, пройдя ряд состояний, возвращается в исходное состояние. Если процесс осуществляется по часовой стрелке, он называется прямым , против часовой стрелки –обратным . Т.к. внутренняя энергия является функцией состояния, то в круговом процессе

Устройство, в котором затрачивается теплота, а получается работа, называется тепловой машиной . Все тепловые машины работают по прямому циклу, состоящему из различных процессов. Устройство, работающее по обратному циклу, называется холодильной машиной . В холодильной машине затрачивается работа, а в результате от холодного тела отнимается теплота, т.е. происходит дополнительное охлаждение этого тела.

Рассмотрим цикл Карно для идеальной тепловой машины. Предполагается, что рабочее тело – идеальный газ, трение отсутствует. Этот цикл, состоящий из двух изотерм и двух адиабат, реально не осуществим, но он сыграл огромную роль в развитии термодинамики и теплотехники и позволил проанализировать коэффициент полезного действия (КПД) тепловых машин.

1-2 изотермическое расширение сообщаемое тепло идет на работу газа
2-3 адиабатическое расширение газ совершает работу за счет внутренней энергии
3-4 изотермическое сжатие внешние силы сжимают газ, передавая теплоту окружающей среде
4-1 адиабатическое сжатие над газом совершается работа, его внутренняя энергия увеличивается
( - из уравнений адиабат) полная работа за цикл; на графике полная А равна площади, охватываемой кривой 1-2-3-4-1

Таким образом, за цикл газу было сообщено Q 1 теплоты, холодильнику передано Q 2 теплоты и получена работа А .

Из полученного выражения следует, что: 1) КПД всегда меньше единицы,

2)КПД не зависит от рода рабочего тела, а только от температуры нагревателя и холодильника, 3)чтобы повысить КПД нужно увеличить температуру нагревателя и уменьшить температуру холодильника. В современных двигателях в качестве нагревателя используются горючие смеси - бензин, керосин, дизельное топливо и др., имеющие определенные температуры горения. Холодильником служит чаще всего окружающая среда. Следовательно, реально увеличить КПД можно только за счет уменьшения трения в различных узлах двигателя и машины.

Тема 18.Вопрос 1.АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА

Молекулы представляют собой сложные системы электрически заряженных частиц. Основная масса молекулы и весь ее положительный заряд сосредоточены в ядрах, их размеры порядка 10 - 15 - 10 - 14 м, а размер самой молекулы, включая электронную оболочку, примерно 10 - 10 м. В целом молекула электрически нейтральна. Электрическое поле ее зарядов в основном сосредоточено внутри молекулы и за ее пределами резко убывает. При взаимодействии двух молекул одновременно проявляются и силы притяжения и силы отталкивания, они по-разному зависят от расстояния между молекулами (см рис.- пунктирные линии). Одновременное действие межмолекулярных сил дает зависимость силы F от расстояния r между молекулами, характерную и для двух молекул, и атомов, и ионов (сплошная кривая). На больших расстояния молекулы практически не взаимодействуют, на очень малых расстояния преобладают силы отталкивания. На расстояниях, равных нескольким диаметрам молекул действуют силы притяжения. Расстояние r o между центрами двух молекул, на котором F=0, - это положение равновесия. Так как сила связана с потенциальной энергией F=-dE пот /dr , то интегрирование даст зависимость потенциальной энергии от r (потенциальная кривая). Равновесное положение соответствует минимуму потенциальной энергии -U min . Для различных молекул вид потенциальной кривой аналогичен, но числовые значения r o и U min различны и определяются природой данных молекул.

Кроме потенциальной, молекула обладает еще и кинетической энергией. Минимальная потенциальная энергия у каждого сорта молекул своя, а кинетическая энергия зависит от температуры вещества (Е кин ~ кТ ). В зависимости от соотношения между этими энергиями данное вещество может находиться в том или ином агрегатном состоянии. Например, вода может быть в твердом состоянии (лед), в жидком и в виде пара.

У инертных газов U min невелики, поэтому они переходят в жидкое состояние при очень низких температурах. У металлов большие величины U min поэтому они находятся в твердом состоянии вплоть до температуры плавления – это могут быть сотни и тысячи градусов.

Вопрос 3.

Смачивание приводит к тому, что на стенках сосуда жидкость как бы «ползет» по стенке, и ее поверхность искривляется. В широком сосуде это искривление практически незаметно. В узких трубках – капиллярах – этот эффект можно наблюдать визуально. За счет сил поверхностного натяжения создается дополнительное (по сравнению с атмосферным) давление , направленное к центру кривизны поверхности жидкости.

Дополнительное давление вблизи искривленной поверхности жидкости D р приводит к подъему (при смачивании) или опусканию (при несмачивании) жидкости в капиллярах.

При равновесии дополнительное давление равно гидростатическому давлению столбика жидкости. Из формулы Лапласа для капилляра круглого сечения Dp = 2s /R , гидростатическое давление р = r g h . Приравнивая = р , найдем h .

Из формулы видно, что чем меньше радиус капилляра, тем выше подъем (или опускание) жидкости.

Явление капиллярности чрезвычайно распространено в природе и технике. Например, проникновение влаги из почвы в растения осуществляется посредством подъема ее по капиллярным каналам. К капиллярным явлениям относится также такое явление, как движение влаги по стенам помещения, приводящее к сырости. Очень большую роль капиллярность играет при добыче нефти. Размеры пор в породе, содержащей нефть, чрезвычайно малы. Если добываемая нефть окажется несмачивающей по отношению к породе, то она закупорит канальца, и извлечь ее будет очень трудно. Добавляя к жидкости некоторые вещества даже в очень малом количестве, можно существенно изменить ее поверхностное натяжение. Такие вещества называются поверхностно-активными веществами. радиус-вектор в прямоугольной системе декартовых координат:

Где -называют координатами точки.

Механическое движение. Относительность движения. Элементы кинематики. материальной точки. Преобразования Галилея. Классический закон сложения скоростей

Механика -раздел физики, изучающий законы движения и взаимодействия тел.Кинематика - раздел механики, не изучающий причины движения тел.

Механическое движение – изменение положение тела в пространстве относительно других тел с течением времени.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Поступательным называется движение, при котором все точки тела движутся одинаково. Поступательным называется движение, при котором любая прямая, проведенная через тело, остаётся параллельной сама себе.

Кинематические характеристики движения

Траектория линия движения. S - путь длина траектории .


S – перемещение – вектор, соединяющий начальное и конечное положение тела.

Относительность движения. Система отсчёта - совокупность тела отсчёта, системы координат и прибора для измерения времени (часов)

система координат

Прямолинейным равномерным движением называют такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость - физическая величина, равная отношению вектора перемещения к промежутку времени, в течение которого это перемещение произошло. Скорость равномерного прямолинейного движения численно равна перемещению за единицу времени.


Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной . Векторная сумма всех сил, действующих на тело, называетсяравнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ее концу тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F 0 . Аналогично могут быть измерены силы 3F 0 , 4F 0 и т. д.

Измерение сил, меньших 2F 0 , может быть выполнено по схеме, показанной на рис. 1.7.5.

Эталонная сила в Международной системе единиц называется ньютон (Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с 2

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра (рис. 1.7.6).

Законы механики Ньютона - три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687). Первый закон: “Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”. Второй закон: “Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует”. Третий закон: “Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны”. 1.1. Зако́н ине́рции (Первый закон Нью́тона) : свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна ине́рция (от лат. inertia - “бездеятельность”, “косность”), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Системы отсчёта, в которых выполняется закон инерции, называются инерциальными системами отсчёта (ИСО). Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково. В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - “покоящейся”) все процессы протекают точно так же, как и в покоящейся системе. Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным. 1.2 Закон движения - математическая формулировка того, как движется тело или как происходит движение более общего вида. В классической механике материальной точки закон движения представляет собой три зависимости трёх пространственных координат от времени, либо зависимость одной векторной величины (радиус-вектора) от времени, вида. Закон движения может быть найден, в зависимости от задачи, либо из дифференциальных законов механики, либо из интегральных. Закон сохранения энергии - основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии. Частный случай - Закон сохранения механической энергии - механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть. Ек1+Еп1=Ек2+Еп2 Закон сохранения энергии - это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт. Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени. 1.3. Зако́н сохране́ния и́мпульса (Зако́н сохране́ния коли́чества движения 2й закон Ньютона) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как и любой из законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе - на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Сам закон: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: . 1.4. Силы инерции Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную “силу инерции”, и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь всё корректно (правильно), но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнём: “сила инерции” - это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета. 1.5. Закон вязкости Закон вязкости (внутреннего трения) Ньютона - математическое выражение, связывающее напряжение внутреннего трения τ (вязкость) и изменение скорости среды v в пространстве (скорость деформации) для текучих тел (жидкостей и газов): где величина η называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости (единица СГС - пуаз). Кинематическим коэффициентом вязкости называется величина μ = η / ρ (единица СГС - Стокс, ρ − плотность среды). Закон Ньютона может быть получен аналитически приемами физической кинетики, где вязкость рассматривается обычно одновременно с теплопроводностью и соответсвующим законом Фурье для теплопроводности. В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле где < u > - средняя скорость теплового движения молекул, λ − средняя длина свободного пробега.







Проекцию считают положительной если (а х >0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х 0) от проекции начала вектора к проекции его конца нужно идти по направлению оси. В противном случае проекция вектора (а х
Путь или перемещение мы оплачиваем при поездке в такси? Мяч упал с высоты 3 м, отскочил от пола и был пойман на высоте 1 м. Найти путь и перемещение мяча. Велосипедист движется по окружности с радиусом 30 м. Чему равны путь и перемещение велосипедиста за половину оборота? За полный оборот?


§ § 2,3 ответить на вопросы в конце параграфа. Упр. 3, стр.15 На рис. показана траектория АВСД движения точки из А в Д. Найти координаты точек начала и конца движения, пройденный путь, перемещение, проекцию перемещения на оси координат. Решить задачу (по желанию):Катер прошел на северо-восток 2 км, а затем в северном направлении еще 1 км. Найти геометрическим построением перемещение (S) и его модуль (S).