Что такое черные дыры?

Дети , как вы думаете, могли ли вы когда нибудь видеть эффект вакуума в вашей комнате? Когда вы что-то делаете, внимательно следите, потому что вы можете увидеть, как грязь и крошки начинают двигаться по направлению к пылесосу. Черная дыра похожа на пылесос, но только в космосе. Тем не менее, это не мощное всасывание, которое заставляет вещи падать в черную дыру. Силы всасывание не будет достаточно сильным. Вместо этого, черная дыра использует силу тяжести, чтобы притягивать все вокруг.

Как формируются черные дыры? Объяснение для детей

Когда у большой звезды заканчивается топливо, она не может больше поддерживать свой вес. Давление от массивных слоев водорода заставляет звезду сжиматься все меньше и меньше. В конце концов, звезда станет меньше атома. Представьте себе дети на мгновение, что вся звезда раздавиться в точку, меньше атома.

Как может получиться что-то меньше, но сохранить тоже количество массы?

На самом деле все очень просто. Возьмите дети губку, размером с бутылку, вы легко можете раздавить ее в руках. Но вот интересный момент. Если вы делаете что-то меньшее, сжимая ее, ее гравитация становится сильнее. Представьте себе дети, если вы сжимаете звезду в размер атома, насколько мощным станет ее гравитация?

Гравитация черной дыры настолько мощная, что поглощает все, даже свет, который проходит слишком близко. Совершенно верно, даже свет не может избежать черную дыру.

Строение черной дыры. Астрономия для детей

Черные дыры состоят из трех основных частей. Внешний слой черной дыры называется внешним горизонтом событий. Внутри внешнего горизонта событий вы еще можете вырваться от гравитации черной дыры, потому что сила тяжести здесь не так сильна. Средний слой черной дыры называется внутренним горизонтом событий. Если вы не избежали силы тяжести черной дыры, прежде чем вошли во внутренний горизонт событий, то вы, дети, упустили свой шанс. Сила тяжести в этом слое намного сильнее и не отпускает объекты, которая она захватывает. В этом момент вы начинаете падать к центру черной дыры. Центр черной дыры называется Сингулярность. Это странное слово означает раздавленную звезду. Сингулярность, это место, где гравитация черной дыры самая сильная.

Как вы можете попасть в черную дыру?

Подумайте о Земле. Если вы приближаетесь слишком близко к Земле, вы сталкиваетесь с ее гравитацией. На Земле вы могли бы снова улететь в космос на ракете. Тем не менее, если вы упадете в черную дыру, то у вас, дети, нет никакой возможности выбраться, так как гравитация очень сильна.

На части гравитационное воздействие еще до того, как он успеет что-то увидеть. Ученые проводили все подсчеты для простейшей сферически симметричной черной дыры , радиус которой равен радиусу Шварцшильда. Черные дыры , образующиеся при коллапсе звезд, обладают более сложными характеристиками. Однако, как отмечают авторы, с течением времени они становятся все более...

https://www.сайт/journal/117634

То есть примерно 1,6x10-35 метра. Расчеты показывают, что в подобных масштабах возможно образование микроскопических черных дыр . Напомним, что согласно современным представлениям, время жизни подобных объектов крайне мало - они испаряются в... Хокинга. Однако исследователи показали, что в рамках их гипотезы черные дыры могут находиться в некотором устойчивом состоянии. Расчеты показывают, что подобные черные дыры будут обладать свойствами, сходными с элементарными частицами. В частности, ...

https://www.сайт/journal/118249

Рассказана на заседании Американского астрономического общества (American Astronomical Society). Астрономы считают, что некоторые сверхмассивные черные дыры , расположенные в соседних галактиках, по меньшей мере, в два раза, а может и в четыре, ... Открытие может изменить представление о том, как впервые формируются галактики и какую роль играют во вселенной черные дыры . В конце же прошлого месяца группа исследователей под руководством Эндрю Фабиана (Andrew Fabian), Кембриджский университет...

https://www.сайт/journal/118608

Достигать 400 тысяч световых лет. По словам исследователей, 10-20 процентов всего железа в галактиках может переноситься с место на место черными дырами . Кроме этого ученые установили, что выбросы компактного объекта приводят к образованию в окружающем дыру газе колоссальных пустот. Размеры некоторых из них достигают 670 тысяч световых лет. Специально для изучения...

https://www.сайт/journal/120495

Работающие в настоящее время в США, предложили способ создать устройство, свойства которого будут напоминать свойства черных дыр . В основе такого устройства должна лежать цилиндрическая структура, оболочка и внутренняя часть которой различаются по... поглощалось. Авторы новой работы реализовали идею российских ученых на практике. Для создания микроволновой черной дыры исследователи воспользовались метаматериалами - особыми веществами, которые могут специфически искривлять пути проходящих сквозь них...

https://www.сайт/journal/121214

Изгибаться, двигаясь по спирали к его центру - совсем, как у черной дыры , хотя и совершенно по другим причинам. Если черная дыра действует благодаря своей колоссальной силе притяжения, инструмент, придуманный Наримановым и Килдишевым, ... (Tie Jun Cui) и Цян Чэн (Qiang Cheng) воплотили ее в реальность, создав такую симулированную «черную дыру », способную улавливать и поглощать микроволновое излучение. Устройство представляет собой цилиндр, состоящий из 60-ти кольцевых слоев пористых метаматериалов...

https://www.сайт/journal/121533

Что J0005-0006 и J0303-0019 образовались вскоре после Большого взрыва, определив массу их черных дыр . Чем больше разогретой пыли находится в квазаре, тем больше масса черной дыры (у нее много "пищи" для роста). Массы черных дыр J0005-0006 и J0303-0019 оказались самыми маленькими из всех известных квазаров молодой Вселенной. Недавно...

https://www.сайт/journal/124842

Эйнштейна-Розена. Эти объекты представляют собой гипотетические тоннели, соединяющие различные регионы пространства. Поплавски полагает, что другой конец червоточины черной дыры соединен с белой дырой (антипод черной дыры - область пространства, в которую ничто не может попасть). При этом внутри червоточины возникают условия, напоминающие расширяющуюся Вселенную, аналогичную наблюдаемой нами...

По причине относительно недавнего роста интереса к созданию научно-популярных фильмов на тему освоения космоса современный зритель наслышан о таких явлениях как сингулярность, или черная дыра. Однако, кинофильмы, очевидно, не раскрывают всей природы этих явлений, а иногда даже искажают построенные научные теории для большей эффектности. По этой причине представление многих современных людей о указанных явлениях либо совсем поверхностно, либо вовсе ошибочно. Одним из решений возникшей проблемы является данная статья, в которой мы попытаемся разобраться в существующих результатах исследований и ответить на вопрос – что такое черная дыра?

В 1784-м году английский священник и естествоиспытатель Джон Мичелл впервые упомянул в письме Королевскому обществу некое гипотетическое массивное тело, которое имеет настолько сильное гравитационное притяжение, что вторая космическая скорость для него будет превышать скорость света. Вторая космическая скорость – это скорость, которая потребуется относительно малому объекту, чтобы преодолеть гравитационное притяжение небесного тела и выйти за пределы замкнутой орбиты вокруг этого тела. Согласно его расчетам, тело с плотностью Солнца и с радиусом в 500 солнечных радиусов будет иметь на своей поверхности вторую космическую скорость равную скорости света. В таком случае даже свет не будет покидать поверхность такого тела, а потому данное тело будет лишь поглощать поступающий свет и останется незаметным для наблюдателя – неким черным пятном на фоне темного космоса.

Однако, концепция сверхмассивного тела, предложенная Мичеллом, не привлекала к себе большого интереса, вплоть до работ Эйнштейна. Напомним, что последний определил скорость света как предельную скорость передачи информации. Кроме того, Эйнштейн расширил теорию тяготения для скоростей близких к скорости света (). В результате этого к черным дырам уже было не актуально применять ньютоновскую теорию.

Уравнение Эйнштейна

В результате применения ОТО к черным дырам и решения уравнений Эйнштейна были выявлены основные параметры черной дыры, которых всего три: масса, электрический заряд и момент импульса. Следует отметить значительный вклад индийского астрофизика Субраманьяна Чандрасекара, который создал фундаментальную монографию: «Математическая теория чёрных дыр».

Таким образом решение уравнений Эйнштейна представлено четырьмя вариантами для четырех возможных видов черных дыр:

  • ЧД без вращения и без заряда – решение Шварцшильда. Одно из первых описаний черной дыры (1916 год) при помощи уравнений Эйнштейна, однако без учета двух из трех параметров тела. Решение немецкого физика Карла Шварцшильда позволяет высчитать внешнее гравитационное поле сферического массивного тела. Особенность концепции ЧД немецкого ученого состоит в наличии горизонта событий и скрывающейся за ним . Также Шварцшильд впервые вычислил гравитационный радиус, получивший его имя, определяющий радиус сферы, на которой располагался бы горизонт событий для тела с данной массой.
  • ЧД без вращения с зарядом – решение Рейснера-Нордстрёма. Решение, выдвинутое в 1916-1918 годах, учитывающее возможный электрический заряд черной дыры. Данный заряд не может быть сколь угодно большим и ограничен по причине возникающего электрического отталкивания. Последнее должно компенсироваться гравитационным притяжением.
  • ЧД с вращением и без заряда – решение Керра (1963 год). Вращающаяся черная дыра Керра отличается от статичной, наличием так называемой эргосферы (об этой и др. составных черной дыры – читайте далее).
  • ЧД с вращением и с зарядом — Решение Керра - Ньюмена. Данное решение было вычислено в 1965-м году и на данный момент является наиболее полным, так как учитывает все три параметра ЧД. Однако, все же предполагается, что в природе черные дыры имеют несущественный заряд.

Образование черной дыры

Существует несколько теорий о том, как образуется и появляется черная дыра, наиболее известная из которых – возникновение в результате гравитационного коллапса звезды с достаточной массой. Таким сжатием может заканчиваться эволюция звезд с массой более трех масс Солнца. По завершению термоядерных реакций внутри таких звезд они начинают ускоренно сжиматься в сверхплотную . Если давление газа нейтронной звезды не может компенсировать гравитационные силы, то есть масса звезды преодолевает т.н. предел Оппенгеймера - Волкова, то коллапс продолжается, в результате чего материя сжимается в черную дыру.

Второй сценарий, описывающий рождение черной дыры – сжатие протогалактического газа, то есть межзвездного газа, находящегося на стадии превращения в галактику или какое-то скопление. В случае недостаточного внутреннего давления для компенсации тех же гравитационных сил может возникнуть черная дыра.

Два других сценария остаются гипотетическими:

  • Возникновение ЧД в результате – т.н. первичные черные дыры.
  • Возникновение в результате протекания ядерных реакций при высоких энергиях. Пример таких реакций – эксперименты на коллайдерах.

Структура и физика черных дыр

Структура черной дыры по Шварцшильду включает всего два элемента, о которых упоминалось ранее: сингулярность и горизонт событий черной дыры. Кратко говоря о сингулярности, можно отметить, что через нее невозможно провести прямую линию, а также, что внутри нее большинство существующих физических теорий не работают. Таким образом, физика сингулярности на сегодня остается загадкой для ученых. черной дыры – это некая граница, пересекая которую, физический объект теряет возможность вернуться обратно за ее пределы и однозначно «упадет» в сингулярность черной дыры.

Строение черной дыры несколько усложняется в случае решения Керра, а именно при наличии вращения ЧД. Решение Керра подразумевает наличие у дыры эргосферы. Эргосфера – некая область, находящаяся снаружи горизонта событий, внутри которой все тела движутся по направлению вращения черной дыры. Данную область еще не является захватывающей и ее возможно покинуть, в отличие от горизонта событий. Эргосфера, вероятно, является неким аналогом аккреционного диска, представляющего вращающееся вещество вокруг массивных тел. Если статичная черная дыра Шварцшильда представляется в виде черной сферы, то ЧД Керри, в силу наличия эргосферы, имеет форму сплюснутого эллипсоида, в виде которого мы часто видели ЧД на рисунках, в старых кинофильмах или видеоиграх.

  • Сколько весит черная дыра? – Наибольший теоретический материал по возникновению черной дыры имеется для сценария ее появления в результате коллапса звезды. В таком случае максимальная масса нейтронной звезды и минимальная масса черной дыры определяется пределом Оппенгеймера - Волкова, согласно которому нижний предел массы ЧД составляет 2.5 – 3 массы Солнца. Самая тяжелая черная дыра, которую удалось обнаружить (в галактике NGC 4889) имеет массу 21 млрд масс Солнца. Однако, не стоит забывать и о ЧД, гипотетически возникающих в результате ядерных реакций при высоких энергиях, вроде тех, что на коллайдерах. Масса таких квантовых черных дыр, иначе говоря «планковских черных дыр» имеет порядок , а именно 2·10 −5 г.
  • Размер черной дыры. Минимальный радиус ЧД можно вычислить из минимальной масса (2.5 – 3 массы Солнца). Если гравитационный радиус Солнца, то есть область, где находился бы горизонт событий, составляет около 2,95 км, то минимальный радиус ЧД 3-х солнечных масс будет около девяти километров. Такие относительно малые размеры не укладываются в голове, когда речь идет о массивных объектах, притягивающих все вокруг. Однако, для квантовых черных дыр радиус равен — 10 −35 м.
  • Средняя плотность черной дыры зависит от двух параметров: массы и радиуса. Плотность черной дыры с массой порядка трех масс Солнца составляет около 6 ·10 26 кг/м³, тогда как плотность воды 1000 кг/м³. Однако, столь малые черные дыры не были найдены учеными. Большинство обнаруженных ЧД имеют массу более 10 5 масс Солнца. Существует интересная закономерность, согласно которой чем массивнее черная дыра, тем меньше ее плотность. При этом изменение массы на 11 порядков влечет изменение плотность на 22 порядка. Таким образом черная дыра массой 1 ·10 9 солнечных масс имеет плотность 18.5 кг/м³, что на единицу меньше плотности золота. А ЧД массой более 10 10 масс Солнца могут иметь среднюю плотность меньше плотности воздуха. Исходя из этих расчетов логично предположить, что образование черной дыры происходит не по причине сжатия вещества, а в результате накопление большого количества материи в некотором объеме. В случае с квантовыми ЧД, их плотность может составлять около 10 94 кг/м³.
  • Температура черной дыры также обратно пропорционально зависит от ее массы. Данная температура непосредственно связана с . Спектр этого излучения совпадает со спектром абсолютно черного тела, то есть тела, что поглощает все падающее излучение. Спектр излучения абсолютно черного тела зависит только от его температуры, тогда температуру ЧД можно определить по спектру излучения Хокинга. Как было сказано выше, данное излучение тем мощнее, чем меньше черная дыра. При этом излучение Хокинга остается гипотетическим, так как еще не наблюдалось астрономами. Из этого следует, что если излучение Хокинга существует, то температура наблюдаемых ЧД столь мала, что не позволяет зарегистрировать указанное излучение. Согласно расчетам даже температура дыры с массой порядка массы Солнца – пренебрежительно мала (1 ·10 -7 К или -272°C). Температура же квантовых черных дыр может достигать порядка 10 12 К и при их скором испарении (около 1.5 мин.) такие ЧД могут испускать энергию порядка десяти миллионов атомных бомб. Но, к счастью, для создания таких гипотетических объектов потребуется энергия в 10 14 раз больше той, которая достигнута сегодня на Большом адронном коллайдере. Кроме того, подобные явления ни разу не наблюдались астрономами.

Из чего состоит ЧД?


Еще один вопрос волнует, как ученых, так и тех, кто просто увлекается астрофизикой — из чего состоит черная дыра? На этот вопрос нет однозначного ответа, так как за горизонт событий, окружающий любую черную дыру, заглянуть не представляется возможным. Кроме того, как уже говорилось ранее, теоретические модели черной дыры предусматривают всего 3 ее составных: эргосфера, горизонт событий и сингулярность. Логично предположить, что в эргосфере имеются лишь те объекты, которые были притянуты черной дырой, и которые теперь вращаются вокруг нее – разного рода космические тела и космический газ. Горизонт событий – лишь тонкая неявная граница, попав за которую, те же космические тела безвозвратно притягиваются в сторону последней основной составляющей ЧД – сингулярности. Природа сингулярности сегодня не изучена и о ее составе говорить еще рано.

Согласно некоторым предположениям черная дыра может состоять из нейтронов. Если следовать сценарию возникновения ЧД в следствие сжатия звезды до нейтронной звезды с последующим ее сжатием, то, вероятно, основная часть черной дыры состоит из нейтронов, из которых состоит и сама нейтронная звезда. Простыми словами: при коллапсе звезды ее атомы сжимаются таким образом, что электроны соединяются с протонами, тем самым образуя нейтроны. Подобная реакция действительно имеет место в природе, при этом с образованием нейтрона происходит излучение нейтрино. Однако, это лишь предположения.

Что будет если попасть в черную дыру?

Падение в астрофизическую черную дыру приводит к растяжению тела. Рассмотрим гипотетического космонавта-смертника, который направился в черную дыру в одном лишь скафандре ногами вперед. Пересекая горизонт событий, космонавт не заметит никаких изменений, несмотря на то, что выбраться обратно у него уже нет возможности. В некоторый момент космонавт достигнет точки (немного позади горизонта событий), в которой начнет происходить деформация его тела. Так как гравитационное поле черной дыры неоднородно и представлено возрастающим по направлению к центру градиентом силы, то ноги космонавта подвергнутся заметно большему гравитационному воздействию, чем, например, голова. Тогда за счет гравитации, вернее – приливных сил, ноги будут «падать» быстрее. Таким образом тело начинает постепенно вытягиваться в длину. Для описания подобного явления астрофизики придумали довольно креативный термин – спагеттификация. Дальнейшее растяжение тела, вероятно, разложит его на атомы, которые, рано или поздно достигнут сингулярности. О том, что будет чувствовать человек в данной ситуации – остается только гадать. Стоит отметить, что эффект растяжения тела обратно пропорционален массе черной дыры. То есть если ЧД с массой трех Солнц мгновенно растянет/разорвет тело, то сверхмассивная черная дыра будет иметь меньшие приливные силы и, есть предположения, что некоторые физические материалы могли бы «стерпеть» подобную деформацию, не потеряв свою структуру.

Как известно, вблизи массивных объектов время течет медленней, а значит время для космонавта-смертника будет течь значительно медленней, чем для землян. В таком случае, возможно, он переживет не только своих друзей, но и саму Землю. Для определения того, насколько замедлится время для космонавта потребуются расчеты, однако из вышесказанного можно предположить, что космонавт будет падать в ЧД очень медленно и, возможно, просто не доживет до того момента, когда его тело начнет деформироваться.

Примечательно, что для наблюдателя снаружи все тела, подлетевшие к горизонту событий, так и останутся у края этого горизонта до тех пор, пока не пропадет их изображение. Причиной подобного явления является гравитационное красное смещение. Несколько упрощая, можно сказать, что свет, падающий на тело космонавта-смертника «застывшего» у горизонта событий будет менять свою частоту в связи с его замедленным временем. Так как время идет медленней, то частота света будет уменьшаться, а длина волны – увеличиваться. В результате этого явления, на выходе, то есть для внешнего наблюдателя, свет постепенно будет смещаться в сторону низкочастотного – красного. Смещение света по спектру будет иметь место, так как космонавт-смертник все более удаляется от наблюдателя, хоть и практически незаметно, и его время течет все медленней. Таким образом свет, отражаемый его телом, вскоре выйдет за пределы видимого спектра (пропадет изображение), и в дальнейшем тело космонавта можно будет уловить лишь в области инфракрасного излучения, позже – в радиочастотном, и в итоге излучение и вовсе будет неуловимо.

Несмотря на написанное выше, предполагается, что в очень больших сверхмассивных черных дырах приливные силы не так сильно изменяются с расстоянием и почти равномерно действуют на падающее тело. В таком случае падающий космический корабль сохранил бы свою структуру. Возникает резонный вопрос – а куда ведет черная дыра? На этот вопрос могут ответить работы некоторых ученых, связывающий два таких явления как кротовые норы и черные дыры.

Еще в 1935-м году Альберт Эйнштейн и Натан Розен с учетом выдвинули гипотезу о существовании так называемых кротовых нор, соединяющий две точки пространства-времени путем в местах значительного искривления последнего – мост Эйнштейна-Розена или червоточина. Для столь мощного искривления пространства потребуются тела с гигантской массой, с ролью которых отлично справились бы черные дыры.

Мост Эйнштейна-Розена – считается непроходимой кротовой норой, так как имеет небольшие размеры и является нестабильной.

Проходимая кротовая дыра возможно в рамках теории черных и белых дыр. Где белая дыра является выходом информации, попавшей в черную дыру. Белая дыра описывается в рамках ОТО, однако на сегодня остается гипотетической и не была обнаружена. Еще одна модель кротовой норы предложена американскими учеными Кипом Торном и его аспирантом — Майком Моррисом, которая может быть проходимой. Однако, как в случае с червоточиной Морриса - Торна, так и в случае с черными и белыми дырами для возможности путешествия требуется существование так называемой экзотической материи, которая имеет отрицательную энергию и также остается гипотетической.

Черные дыры во Вселенной

Существование черных дыр подтверждено относительно недавно (сентябрь 2015 г.), однако до того времени существовал уже немалый теоретический материал по природе ЧД, а также множество объектов-кандидатов на роль черной дыры. Прежде всего следует учесть размеры ЧД, так как от них зависит и сама природа явления:

  • Черная дыра звездной массы . Такие объекты образуются в результате коллапса звезды. Как уже упоминалось ранее, минимальная масса тела, способного образовать такую черную дыру составляет 2.5 – 3 солнечных масс.
  • Черные дыры средней массы . Условный промежуточный тип черных дыр, которые увеличились за счет поглощения близлежащих объектов, вроде скопления газа, соседней звезды (в системах двух звезд) и других космических тел.
  • Сверхмассивная черная дыра . Компактные объекты с 10 5 -10 10 масс Солнца. Отличительными свойствами таких ЧД является парадоксально невысокая плотность, а также слабые приливные силы, о которых говорилось ранее. Именно такая сверхмассивная черная дыра в центре нашей галактики Млечного пути (Стрелец А*, Sgr A*), а также большинстве других галактик.

Кандидаты в ЧД

Ближайшая черная дыра, а вернее кандидат на роль ЧД – объект (V616 Единорога), который расположен на расстоянии 3000 световых лет от Солнца (в нашей галактике). Он состоит из двух компонент: звезды с массой в половину солнечной массы, а также невидимого тела малых размеров, масса которого составляет 3 – 5 масс Солнца. Если данный объект окажется небольшой черной дырой звездной массы, то по праву стане ближайшей ЧД.

Следом за этим объектом второй ближайшей черной дырой является объект Лебедь X-1 (Cyg X-1), который был первым кандидатом на роль ЧД. Расстояние до него примерно 6070 световых лет. Достаточно хорошо изучен: имеет массу в 14.8 масс Солнца и радиус горизонта событий около 26 км.

По некоторым источником еще одним ближайшим кандидатом на роль ЧД может быть тело в звездной системе V4641 Sagittarii (V4641 Sgr), которая по оценкам 1999-го года располагалась на расстоянии 1600 световых лет. Однако, последующие исследования увеличили это расстояние как минимум в 15 раз.

Сколько черных дыр в нашей галактике?

На этот вопрос нет точного ответа, так как наблюдать их довольно непросто, и за все время исследования небосвода ученым удалось обнаружить около десятка черных дыр в пределах Млечного Пути. Не предаваясь расчетам, отметим, что в нашей галактике около 100 – 400 млрд звезд, и примерно каждая тысячная звезда имеет достаточно массы, чтобы образовать черную дыру. Вероятно, что за время существования Млечного Пути могли образоваться миллионы черных дыр. Так как зарегистрировать проще черные дыры огромных размеров, то логично предположить, что скорее всего большинство ЧД нашей галактики не являются сверхмассивными. Примечательно, что исследования НАСА 2005-го года предполагают наличие целого роя черных дыр (10-20 тысяч), вращающихся вокруг центра галактики. Кроме того, в 2016-м году японские астрофизики обнаружили массивный спутник вблизи объекта * — черная дыра, ядро Млечного Пути. В силу небольшого радиуса (0,15 св. лет) этого тела, а также его огромной массы (100 000 масс Солнца) ученые предполагают, что данный объект тоже является сверхмассивной черной дырой.

Ядро нашей галактики, черная дыра Млечного Пути (Sagittarius A*, Sgr A* или Стрелец А*) является сверхмассивной и имеет массу 4,31·10 6 масс Солнца, а радиус — 0,00071 световых лет (6,25 св. ч. или 6,75 млрд. км). Температура Стрельца А* вместе со скоплением около него составляет около 1·10 7 K.

Самая большая черная дыра

Самая большая черная дыра во Вселенной, которую ученым удалось обнаружить – сверхмассивная черная дыра, FSRQ блазар, в центре галактики S5 0014+81, на расстоянии 1.2·10 10 световых лет от Земли. По предварительным результатам наблюдения, при помощи космической обсерватории Swift, масса ЧД составила 40 миллиардов (40·10 9) солнечных масс, а радиус Шварцшильда такой дыры – 118,35 миллиард километров (0,013 св.лет). Кроме того, согласно подсчетам, она возникла 12,1 млрд лет назад (спустя 1,6 млрд. лет после Большого взрыва). Если данная гигантская черная дыра не будет поглощать окружающую ее материю, то доживет до эры черных дыр – одна из эпох развития Вселенной, во время которой в ней будут доминировать черные дыры. Если же ядро галактики S5 0014+81 продолжит разрастаться, то оно станет одной из последних черных дыр, которые будут существовать во Вселенной.

Другие две известные черные дыры, хоть и не имеющие собственных названий, имеют наибольшее значение для исследования черных дыр, так как подтвердили их существование экспериментально, а также дали важные результаты для изучения гравитации. Речь о событии GW150914, которым названо столкновение двух черных дыр в одну. Данное событие позволило зарегистрировать .

Обнаружение черных дыр

Прежде, чем рассматривать методы обнаружения ЧД, следует ответить на вопрос — почему черная дыра черная? – ответ на него не требует глубоких познаний в астрофизике и космологии. Дело в том, что черная дыра поглощает все падающее на нее излучение и совсем не излучает, если не брать во внимание гипотетическое . Если рассмотреть данный феномен подробнее, можно предположить, что внутри черных дыр не протекают процессы, приводящие к высвобождению энергии в виде электромагнитного излучения. Тогда если ЧД и излучает, то в спектре Хокинга (который совпадает со спектром нагретого, абсолютно черного тела). Однако, как было сказано ранее, данное излучение не было зарегистрировано, что позволяет предположить о совершенно низкой температуре черных дыр.

Другая же общепринятая теория говорит о том, что электромагнитное излучение и вовсе не способно покинуть горизонт событий. Наиболее вероятно, что фотоны (частицы света) не притягиваются массивными объектами, так как согласно теории – сами не имеют массы. Однако, черная дыра все же «притягивает» фотоны света посредством искажения пространства-времени. Если представить ЧД в космосе в виде некой впадины на гладкой поверхности пространства-времени, то существует некоторое расстояние от центра черный дыры, приблизившись на которое к ней свет уже не сможет отдалиться. То есть грубо говоря, свет начинает «падать» в «яму», которая даже не имеет «дна».

В дополнение к этому, если учесть эффект гравитационного красного смещения, то возможно в черной дыре свет теряет свою частоту, смещаясь по спектру в область низкочастотного длинноволнового излучения, пока вовсе не утратит энергию.

Итак, черная дыра имеет черный цвет и потому ее сложно обнаружить в космосе.

Методы обнаружения

Рассмотрим методы, которые астрономы используют для обнаружения черной дыры:


Помимо упомянутых выше методов, ученые часто связывают такие объекты как черные дыры и . Квазары – некие скопления космических тел и газа, которые являются одними из самых ярких астрономических объектов во Вселенной. Так как они обладают высокой интенсивностью свечения при относительно малых размерах, есть основания предполагать, что центром этих объектов есть сверхмассивная черная дыра, притягивающая к себе окружающую материю. В силу столь мощного гравитационного притяжения притягиваемая материя настолько разогрета, что интенсивно излучает. Обнаружение подобных объектов обычно сопоставляется с обнаружением черной дыры. Иногда квазары могут излучать в две стороны струи разогретой плазмы – релятивистские струи. Причины возникновения таких струй (джет) не до конца ясны, однако вероятно они вызваны взаимодействием магнитных полей ЧД и аккреционного диска, и не излучаются непосредственной черной дырой.

Джет в галактике M87 бьющий из центра ЧД

Подводя итоги вышесказанного, можно представить себе, вблизи: это сферический черный объект, вокруг которого вращается сильно разогретая материя, образуя светящийся аккреционный диск.

Слияние и столкновение черных дыр

Одним из интереснейших явлений в астрофизике является столкновение черных дыр, которое также позволяет обнаруживать такие массивные астрономические тела. Подобные процессы интересуют не только астрофизиков, так как их следствием становятся плохо изученные физиками явления. Ярчайшим примером является упомянутое ранее событие под названием GW150914, когда две черные дыры приблизились настолько, что в результате взаимного гравитационного притяжения слились в одну. Важным следствием этого столкновение стало возникновение гравитационных волн.

Согласно определению гравитационных волн – это такие изменения гравитационного поля, которые распространяются волнообразным образом от массивных движущихся объектов. Когда два таких объекта сближаются – они начинают вращаться вокруг общего центра тяжести. По мере их сближения, их вращение вокруг собственной оси возрастает. Подобные переменные колебания гравитационного поля в некоторый момент могут образовать одну мощную гравитационную волну, которая способна распространиться в космосе на миллионы световых лет. Так на расстоянии 1,3 млрд световых лет произошло столкновение двух черных дыр, образовавшее мощную гравитационную волну, которая дошла до Земли 14 сентября 2015 года и была зафиксирована детекторами LIGO и VIRGO.

Как умирают черные дыры?

Очевидно, чтобы черная дыра перестала существовать, ей понадобится потерять всю свою массу. Однако, согласно ее определению — ничто не может покинуть пределы черной дыры если перешло ее горизонт событий. Известно, что впервые о возможности излучения черной дырой частиц упомянул советский физик-теоретик Владимир Грибов, в своей дискуссии с другим советским ученым Яковом Зельдовичем. Он утверждал, что с точки зрения квантовой механики черная дыра способна излучать частицы посредством туннельного эффекта. Позже при помощи квантовой механики построил свою, несколько иную теорию английский физик-теоретик Стивен Хокинг. Подробнее о данном явлении Вы можете прочесть . Кратко говоря, в вакууме существуют так называемые виртуальные частицы, которые постоянно попарно рождаются и аннигилируют друг с другом, при этом не взаимодействуя с окружающим миром. Но если подобные пары возникнут на горизонте событий черной дыры, то сильная гравитация гипотетически способна их разделить, при этом одна частица упадет внутрь ЧД, а другая отправится по направлению от черной дыры. И так как улетевшая от дыры частица может быть наблюдаема, а значит обладает положительной энергий, то упавшая в дыру частица должна обладать отрицательной энергий. Таким образом черная дыра будет терять свою энергию и будет иметь место эффект, который называется – испарение черной дыры.

Согласно имеющимся моделям черной дыры, как уже упоминалось ранее, с уменьшением ее массы ее излучение становится все интенсивнее. Тогда на завершающем этапе существования ЧД, когда она, возможно, уменьшится до размеров квантовой черной дыры, она выделит огромное количество энергии в виде излучения, что может быть эквивалентно тысячам или даже миллионам атомных бомб. Данное событие несколько напоминает взрыв черной дыры, словно той же бомбы. Согласно подсчетам, в результате Большого взрыва могли зародиться первичные черные дыры, и те из них, масса которых порядка 10 12 кг, должны были бы испариться и взорваться примерно в наше время. Как бы то ни было, подобные взрывы ни разу не были замечены астрономами.

Несмотря на предложенный Хокингом механизм уничтожения черных дыр, свойства излучения Хокинга вызывают парадокс в рамках квантовой механики. Если черная дыра поглощает некоторое тело, а после теряет массу, возникшую в результате поглощения этого тела, то независимо от природы тела, черная дыра не будет отличаться от той, которой она была до поглощения тела. При этом информация о теле навсегда утеряна. С точки зрения теоретических расчетов преобразование исходного чистого состояния в полученное смешанное («тепловое») не соответствует нынешней теории квантовой механики. Этот парадокс иногда называют исчезновением информации в чёрной дыре. Доподлинное решение данного парадокса так и не было найдено. Известные варианты решения парадокса:

  • Не состоятельность теории Хокинга. Это влечет за собой невозможность уничтожения черной дыры и постоянный ее рост.
  • Наличие белых дыр. В таком случае поглощаемая информация не пропадает, а просто выбрасывается в другую Вселенную.
  • Не состоятельность общепринятой теории квантовой механики.

Нерешенный проблемы физики черных дыр

Судя по всему, что было описано ранее, черные дыры хоть и изучаются относительно долгое время, все же имеют множество особенностей, механизмы которых до сих пор не известен ученым.

  • В 1970-м году английский ученый сформулировал т.н. «принцип космической цензуры» — «Природа питает отвращение к голой сингулярности». Это означает, что сингулярность образуется только в скрытых от взора местах, как центр черной дыры. Однако, доказать данный принцип пока не удалось. Также существуют теоретические расчеты, согласно которым «голая» сингулярность может возникать.
  • Не доказана и «теорема об отсутствии волос», согласно которой черные дыры имеют всего три параметра.
  • Не разработана полная теория магнитосферы черной дыры.
  • Не изучена природа и физика гравитационной сингулярности.
  • Доподлинно неизвестно, что происходит на завершающем этапе существования черной дыры, и что остается после ее квантового распада.

Интересные факты о черных дырах

Подводя итоги вышесказанного можно выделить несколько интересных и необычных особенностей природы черных дыр:

  • ЧД имеют всего три параметра: масса, электрический заряд и момент импульса. В результате такого малого количества характеристик этого тела, теорема утверждающие это, называется «теоремой об отсутствии волос» («no-hair theorem»). Отсюда также возникла фраза «у черной дыры нет волос», которая обозначает, что две ЧД абсолютно идентичны, упомянутые их три параметра одинаковы.
  • Плотность ЧД может быть меньше плотности воздуха, а температура близкая к абсолютному нулю. Из этого можно предположить, что образование черной дыры происходит не по причине сжатия вещества, а в результате накопление большого количества материи в некотором объеме.
  • Время для тел, поглощенных ЧД, идет значительно медленней, чем для внешнего наблюдателя. Кроме того, поглощенные тела значительно растягиваются внутри черной дыры, что было названо учеными – спагеттификацией.
  • В нашей галактике может быть около миллиона черных дыр.
  • Вероятно, в центре каждой галактики располагается сверхмассивная черная дыра.
  • В будущем, согласно теоретической модели, Вселенная достигнет так называемой эпохи черных дыр, когда ЧД станут доминирующими телами во Вселенной.

« Чёрные дыры » Вселенной.

«Черная дыры»

«Что там новенького в космосе? Чёрные дыры? Заглянуть в них не прочь не только астрономы, но и те, кто интересуется жизнью вселенной, в том числе и любопытные школьники», – так сказал доктор педагогических наук Е. Левитан.

В научно – популярной литературе, в статьях о Вселенной часто можно встретить термин «чёрная дыра». У Вас, впервые, прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене. Упоминание о дырах во Вселенных, первоначально также ассоциируется с неким отверстием в небесах. Так, что же такое чёрная дыра?

Чёрная дыра – это космический объект невероятной плотности, обладающий абсолютной гравитацией, такой, что любое космическое тело и даже само пространство и время, поглощаются ею, это своего рода конечная точка всего.

«Черная дыры» немного напоминают пылесос, который работает в космосе, но в отличие от пылесоса чёрные дыры не всасывают внутрь себя все находящиеся в зоне их воздействия объекты, а, используя свою силу тяжести, только притягивают всё вокруг. Это называется эффектом вакуума (отсутствие воздуха), который вы можете наблюдать и у себя дома в своей комнате. Когда при уборке комнаты включается пылесос, то можно наблюдать, как крошки, грязь и мелкие предметы начинают движение по направлению к пылесосу. У чёрной дыры сила всасывания не так велика, как у пылесоса, поэтому космические объекты не всасываются внутрь неё, а только притягиваются.

Что же делает чёрная дыра? Чёрные дыры управляют самой эволюцией Вселенной. Они на центральном месте, но их невозможно увидеть, можно обнаружить их признаки, хотя чёрные дыры обладают свойством разрушать, они также помогают строить галактики.

Как рождается чёрная дыра? Когда у большой звезды заканчивается топливо, она не может больше поддерживать свой вес. Давление от массивных слоёв водорода заставляет звезду сжиматься всё меньше и меньше. В конце концов, звезда станет меньше атома. Представьте себе на мгновение, что вся звезда раздавиться в точку, меньше атома.

Как может получиться что-то меньше, но сохранить тоже количество массы? На самом деле все очень просто. Возьмём губку, размером с бутылку, мы легко можем раздавить ее в руках. Но вот интересный момент. Если мы делаем что-то меньшее, сжимая ее, ее гравитация становится сильнее. Представим себе, если мы сжимаем звезду в размер атома, насколько мощным станет ее гравитация? Гравитация черной дыры настолько мощная, что поглощает все, даже свет, который проходит слишком близко. Совершенно верно, даже свет не может избежать черную дыру.

Строение чёрной дыры: Черные дыры состоят из трех основных частей). Внешний слой черной дыры называется внешним горизонтом событий. Внутри внешнего горизонта событий вы еще можете вырваться от гравитации черной дыры, потому что сила тяжести здесь не так сильна. Средний слой черной дыры называется внутренним горизонтом событий. Центр черной дыры называется Сингулярность. Это странное слово означает раздавленную звезду. Сингулярность, это место, где гравитация черной дыры самая сильная.

Что будет если в неё попасть? Здесь очень интересно. Для наблюдателя с Земли будет видно, как тот кто полетел к чёрной дыре, моментально в неё упал и исчез. А тот, кто к ней будет подлетать, будет медленно-медленно приближаться, часы будут всё медленнее идти, всё будет затормаживаться (это происходит потому, что чёрная дыра искривляет (нарушает) пространство (мир) вокруг себя.

Что считают учёные, относительно чёрных дыр? Некоторые учёные считают, что чёрные дыры являются воротами в параллельные вселенные, что вполне может быть.

Теперь понятно, что чёрная дыра – это совершенно загадочное явление в Космосе, о котором человечество не знает практически ничего. Поэтому любые новые сведения о них становятся сенсацией. А так как изучение чёрных дыр практически невозможно в космосе, то на Земле изучают их аналоги и создают модели.

Аналоги «чёрных дыр» на Земле .

- тела таких огромных масштабов, что человеку их трудно осознать. Но на Земле, оказывается, есть "миниатюрный" аналог этих . И эти аналоги недавно были обнаружены в южной части Атлантического океана

Аналог космического монстра создан в китайской лаборатории – он способен засасывать свет.

«Чёрные дыры» позволят создать солнечные батареи нового поколения, способные улавливать энергию светила гораздо эффективнее нынешних.

Модели «чёрных дыр».

Объеденив знания мировых ведущих физиков о чёрной дыре с передовыми визуальными эффектами, кинокартина «Интерстеллар» показала наиболее точную модель чёрной дыры в истории научной фантстики. Ведущие мировые ученые предложили использовать голливудский научно-фантастический фильм «Интерстеллар» в качестве учебного пособия для детей по черным дырам

Учёные провели опыты, смоделировав «в ванной» черные дыры с их горизонтом событий.

Рябь в потоке ведет себя почти так же, как световые волны в пространстве-времени. Вблизи камня поток становится неоднородным, рябь изгибается, а длины волн изменяются. То же самое происходит со светом в гравитационных полях звезд и планет. В некоторых случаях поток настолько быстр, что рябь не может распространяться против течения, словно свет, не способный выйти из черной дыры

Что общего у капли воды, чёрной дыры и атома? Группа британских ученых, возглавляемая профессором обратились к капле воды потому, что силы поверхностного натяжения, удерживающие ее в целости, можно использовать, как аналог других сил, действующих в других объектах, от атома до черной дыры.

Ещё одна интересная модель «чёрной дыры» была создана в Новосибирском планетарии. Одна из занимательных игр для детей. Очень интересно сравнить, с какой скоростью и как в дыру затягивает тяжёлые и лёгкие шарики. Дольше всего держится, естественно, тяжёлый.

Как наглядно показать и представить «чёрную дыру»?

Как же можно наглядно показать и представить «чёрную дыру», чтобы нам легче было понять её устройство.

Представим чёрную дыру в виде водопада, гравитацию в виде реки, текущей к водопаду, а луч света в виде байдарки. Выше от водопада течение слабое, человек в лодке может грести против течения и выбраться. Но чем ближе к водопаду, тем сильнее течение и тем труднее выбраться. Край водопада – это край чёрной дыры. Несмотря на всю силу человека в лодке, он падает. То же самое и в космосе.

Для наглядного представления «Чёрной дыры» возьмём большой кусок пищевой плёнки, растянем его в руках и положим в центр небольшой шарик, чтобы тот образовал прогиб из-за своего веса. Капнем несколько капель воды на лист и посмотрим, как они скатятся по плёнке прямо к шарику. Это покажет, как работает гравитация. Уберём шарик и пальцем потрогали плёнку и определим - чем сильнее её оттягивать (чем тяжелее объект), тем сильнее получается воронка. Затем сделаем дыру посередине плёнки, которая изображает очень и очень тяжёлый объект. Через это отверстие будут проскакивать капли воды. Выходит, что чёрная дыра - это настолько тяжёлый объект, что он искривляет пространство. Всё, что попадает в него (как капли), никогда не возвращается обратно».

Понятие чёрной дыры известно всем - от школьника до людей преклонного возраста, оно используется в научной и фантастической литературе, в желтых СМИ и на научных конференциях. Но что конкретно представляют собой такие дыры, известно далеко не всем.

Из истории чёрных дыр

1783 г. Первая гипотеза существования такого явления, как чёрная дыра, была выдвинута в 1783 году английским учёным Джоном Мичеллом. В своей теории он объединил два творению Ньютона - оптику и механику. Идея Мичелла была такова: если свет - это поток мельчайших частиц, то, как и все другие тела, частицы должны испытывать притяжение гравитационного поля. Получается, чем массивнее звезда, тем сложнее свету противиться её притяжению. Через 13 лет после Мичелла, французский астроном и математик Лаплас выдвинул (скорее всего, независимо от британского коллеги) схожую теорию.

1915 г. Однако, все их труды оставались невостребованными вплоть до начала XX века. В 1915 году Альберт Эйнштейн опубликовал Общую теорию относительности и показал, что гравитация есть искривление пространства-времени, вызванное материей, а спустя несколько месяцев немецкий астроном и физик-теоретик Карл Шварцшильд использовал её для решения конкретной астрономической задачи. Он исследовал структуру искривленного пространства-времени вокруг Солнца и заново открыл феномен чёрных дыр.

(Джон Уилер ввел в научный обиход термин "Чёрные дыры")

1967 г. Американский физик Джон Уилер обрисовал пространство, которое можно скомкать, подобно листику бумаги, в бесконечно малую точку и обозначил термином "Чёрная дыра".

1974 г. Британский физик Стивен Хокинг доказал, что чёрные дыры, хоть и поглащают метерию без возврата, могут испускать излучение и в конце концов испаряться. Такое явление получило название "излучение Хокинга".

Наше время. Новейшие исследования пульсаров и квазаров, а также открытие реликтового излучения, наконец сделали возможным описать само понятие чёрных дыр. В 2013 году газовое облако G2 приблизилось на очень близкое расстояние к Чёрной дыре и скорее всего будет поглощено ей, наблюдения за уникальным процессом даст огромные возможности для новых открытий особенностей чёрных дыр.

Чем на самом деле являются чёрные дыры


Лаконичное объяснение феномена звучит так. Чёрная дыр - это пространственно-временная область, чье гравитационное притяжение настолько велико, что её не может покинуть ни один объект, в том числе световые кванты.

Когда-то чёрная дыра была массивной звёздой. Пока термоядерные реакции поддерживают в её недрах высокое давление, всё остаётся в норме. Но со временем запас энергии истощается и небесное тело, под действием собственной гравитации, начинает сжиматься. Завершающий этап этого процесса - схлопывание звездного ядра и образование чёрной дыры.


  • 1. Выбрасывание черной дырой струи на высокой скорости

  • 2. Диск материи перерастает в чёрную дыру

  • 3. Чёрная дыра

  • 4. Детальная схема региона чёрной дыры

  • 5. Размер найденных новых наблюдений

Самая распространённая теория гласит, что подобные феномены есть в каждой галактике, в том числе и в центре нашего Млечного пути. Огромная сила притяжения дыры способна удерживать вокруг себя несколько галактик, не давая им удаляться друг от друга. «Площадь покрытия» может быть разной, всё зависит от массы звёзды, которая превратилась в чёрную дыру, и может составлять тысячи световых лет.

Радиус Шварцшильда

Главное свойство чёрной дыры - любое вещество, которое в неё попало, никогда не сможет вернуться. Это же касается и света. По своей сути дыры - это тела, которые полностью поглощают весь попадающий на них свет и не испускающие собственного. Такие объекты визуально могут казаться сгустками абсолютной темноты.


  • 1. Движущаяся материя в половину скорости света

  • 2. Фотонное кольцо

  • 3. Внутреннее фотонное кольцо

  • 4. Горизонт событий в чёрной дыре

Отталкиваясь от Общей теории относительности Эйнштейна, если тело приблизилось на критическое расстояние к центру дыры, оно уже не сможет вернуться. Это расстояние называют радиусом Шварцшильда. Что именно происходит внутри этого радиуса доподлинно неизвестно, но есть наиболее распространенная теория. Считается, что всё вещество чёрной дыры концентрируется в бесконечно малой точке, а в её центре находится объект с бесконечной плотностью, который ученые именуют сингулярным возмущением.

Как происходит падение в чёрную дыру


(На картинке чёрная дыра Стрельца А* выглядит крайне ярким скоплением света)

Не так давно, в 2011 году, ученые обнаружили газовое облако, дав ему несложное название G2, которое испускает необычные свет. Такое свечение может давать трение в газе и пыли, вызываемое действием чёрной дыры Стрельца А* и которые вращаются вокруг нее в виде аккреционного диска. Таким образом, мы становимся наблюдателями удивительного явления поглощения сверхмассивной чёрной дырой газового облака.

По последним исследованиям наибольшее сближение с черной дырой произойдет в марте 2014 года. Мы можем воссоздать картину того, как будет происходит это захватывающее зрелище.

  • 1. При первом появлении в данных газовое облако напоминает огромный шар из газа и пыли.

  • 2. Сейчас по состоянию на июнь 2013 года облако находится в десятках миллиардов километров от чёрной дыры. Оно падает в неё со скоростью 2500 км/с.

  • 3. Ожидается, что облако пройдет мимо чёрной дыры, но приливные силы, вызванные различием в притяжении, действующем на передний и задний край облака, заставят его принимать всё более вытянутую форму.

  • 4. После того, как облако будет разорвано, большая его часть, скорее всего, вольется в аккреционный диск вокруг Стрельца А*, порождая в нём ударные волны. Температура при этом подскочит до нескольких миллионов градусов.

  • 5. Часть облака упадёт прямо в чёрную дыру. Никто не знает в точности, что случится потом с этим веществом, но ожидается, что в процессе падения оно будет испускать мощные потоки рентгеновских лучей, и больше его никто не увидит.

Видео: чёрная дыра поглощает газовое облако

(Компьютерное моделирование того, как большая часть газового облака G2 будет разрушено и поглощено чёрной дырой Стрельцом А*)

Что там внутри чёрной дыры?

Есть теория, которая утверждает, что чёрная дыра внутри практически пуста, а вся её масса сосредоточена в невероятно маленькой точке, находящейся в самом её центре - сингулярности.

Согласно другой теории, существующей на протяжении полувека, всё, что попадает в чёрную дыру, переходит в другую вселенную, находящуюся в самой чёрной дыре. Сейчас это теория не является основной.

И есть третья, самая современная и живучая теория, по которой всё, что попадает в чёрную дыру, растворяется в колебаниях струн на её поверхности, которую обозначают, как горизонт событий.


Так что же такое - горизонт событий? Внутрь чёрной дыры заглянуть нельзя даже сверхмощным телескопом, так как даже свет, попадая внутрь гигантской космической воронки, не имеет шансов вынырнуть назад. Всё, что можно хоть как-то рассмотреть, находится в её ближайших окрестностях.

Горизонт событий - это условная линия поверхности, из под которой ничто (ни газ, ни пыль, ни звезды, ни свет) выйти уже не сможет. И вот это и есть та самая таинственная точка невозврата в чёрных дырах Вселенной.