Все мы знаем, что водород наполняет нашу Вселенную на 75%. Но знаете ли вы, какие еще есть химические элементы, не менее важные для нашего существования и играющие значительную роль для жизни людей, животных, растений и всей нашей Земли? Элементы из этого рейтинга формируют всю нашу Вселенную!

10. Сера (распространенность относительно кремния – 0.38)

Этот химический элемент в таблице Менделеева значится под символом S и характеризуется атомным номером 16. Сера очень в природе.

9. Железо (распространенность относительно кремния – 0.6)

Обозначается символом Fe, атомный номер – 26. Железо очень часто встречается в природе, особенно важную роль оно играет в формировании внутренней и внешней оболочки ядра Земли.

8. Магний (распространенность относительно кремния – 0.91)

В таблице Менделеева магний можно найти под символом Mg, и его атомный номер – 12. Что самое удивительное в этом химическом элементе, так это то, что он чаще всего выделяется при взрыве звезд в процессе их преобразования в сверхновые тела.

7. Кремний (распространенность относительно кремния – 1)

Обозначается как Si. Атомный номер кремния – 14. Этот серо-голубой металлоид очень редко встречается в земной коре в чистом виде, но довольно распространен в составе других веществ. Например, его можно обнаружить даже в растениях.

6. Углерод (распространенность относительно кремния – 3.5)

Углерод в таблице химических элементов Менделеева значится под символом С, его атомный номер – 6. Самой знаменитой аллотропной модификацией углерода являются одни из самых желанных драгоценных камней в мире – алмазы. Углерод активно применяют и в других в промышленных целях более будничного назначения.

5. Азот (распространенность относительно кремния – 6.6)

Символ N, атомный номер 7. Впервые открытый шотландским врачом Дэниелом Рутерфордом (Daniel Rutherford), азот чаще всего встречается в форме азотной кислоты и нитратов.

4. Неон (распространенность относительно кремния – 8.6)

Обозначается символом Ne, атомный номер - 10. Не секрет, что именно этот химический элемент ассоциируется с красивым свечением.

3. Кислород (распространенность относительно кремния – 22)

Химический элемент под символом О и с атомным номером 8, кислород незаменим для нашего существования! Но это не значит, что он присутствует только на Земле и служит только для человеческих легких. Вселенная полна сюрпризов.

2. Гелий (распространенность относительно кремния – 3.100)

Символ гелия – He, атомный номер – 2. Он бесцветен, не имеет запаха и вкуса, не ядовит, и его точка кипения – самая низкая среди всех химических элементов. А еще благодаря ему шарики взмывают ввысь!

1. Водород (распространенность относительно кремния – 40.000)

Истинный номер один в нашем списке, водород находится в таблице Менделеева под символом Н и обладает атомным номером 1. Это самый легкий химический элемент периодической таблицы и самый распространенный элемент во всей изученной человеком Вселенной.

Инструкция

Лавуазье отнес к элементам ряд простых веществ – все известные к тому времени металлы, а также фосфор, серу, водород, кислород, азот. Помимо этого, он отнес к элементам свет, теплород и. «солеобразующие землистые вещества». Разумеется, с позиции сегодняшнего дня, многие его утверждения кажутся наивными, но для того времени это был большой шаг вперед.

В первой половине 10-го века, усилиями Дальтона и других известных ученых, атомно-молекулярная гипотеза элементов. Она рассматривает любой химический элемент как отдельный вид атомов, а простые и сложные вещества, как состоящие, соответственно, из атомов одного или разных видов.

Дальтону же принадлежит в определении атомного веса элемента, как важнейшего показателя, от которого напрямую зависят его . Другой химик – Берцелиус - провел большую работу по определению атомных весов элементов. Это во многом способствовало открытию Периодического закона Менделеевым. К этому моменту, было известно 63 элемента. С помощью Периодического закона, стало возможным предсказывать физико-химические свойства еще не открытых элементов.

Каждому элементу в Таблице Менделеева отведено строго определенное место. Он имеет как полное название, так и сокращенную форму записи – символ, состоящий из одной или двух латинских букв, взятых из латинского же названия элемента. Например, Fe (ferrum, железо), Сu (сuprum, медь), Н (hydrogenium, водород). Возле символа элемента располагается следующая информация о нем: порядковый номер, соответствующий количеству протонов в ядре, атомная масса, распределение электронов по энергетическим уровням, электронная конфигурация.

Видео по теме

Абсолютно все, что нас окружает, облака, лес или новенький автомобиль, состоит из чередования мельчайших атомов. Атомы отличаются размером, массой, сложностью строения. Даже принадлежащие к одному виду, атомы могут незначительно различаться. Чтобы навести порядок во всем этом многообразии, ученые придумали такое понятие, как химический элемент. Этим термином принято обозначать постоянное соединение атомов с одинаковым количеством протонов, то есть с постоянным зарядом ядра.

Во время любого возможного взаимодействия между собой атомы химических элементов не изменяются, трансформируются только связи между ними. Например, если на кухне привычным жестом зажечь газовую конфорку, произойдет химическая реакция между элементами. При этом метан (СН4) вступает в реакцию с кислородом (О2), образуя диоксид углерода (СО2) и воду, точнее, водяной пар (Н2О). Но во время этого взаимодействия не было образовано ни одного нового химического элемента, а вот связи между ними изменились.

Систематизация элементов

Впервые идея о существовании постоянных, не изменяющихся химических элементов возникла у знаменитого противника алхимии Роберта Бойля в далеком 1668 году. В своей книге он рассматривал свойства всего 15 элементов, но допускал существование, новых, еще не открытых учеными.

Примерно через 100 лет гениальный химик из Франции, Антуан Лавуазье, создал и опубликован перечень уже из 35 элементов. Правда, не все из них оказались неделимыми, но это запустило процесс поиска, в который включились ученые всей Европы. Среди задач было не только распознавание постоянных атомных соединений, но и возможная систематизация уже определенных элементов.

Впервые о возможной связи между атомной массой элементов и их расположением задумался гениальный русский ученый Дмитрий Иванович Менделеев. Гипотеза занимала его долгое время, но логичную строгую последовательность расположения известных элементов создать не получалось. Основную идею своего открытия Менделеев представил в 1869 году в докладе Русскому химическому обществу, но наглядно продемонстрировать свои выводы он тогда не смог.

Существует легенда, что ученый в течение трех суток кропотливо работал над созданием таблицы, не отвлекаясь даже на сон и еду. Не выдержав напряжения, ученый задремал и именно во сне увидел систематизированную таблицу, в которой элементы заняли свои места согласно своей атомной массе. Конечно, легенда о сне звучит очень увлекательно, но Менделеев размышлял над своей гипотезой больше двадцати лет, поэтому и результат получился настолько исключительным.

Открытие новых элементов

Работу над природой химических элементов Дмитрий Менделеев продолжал и после признания своего открытия. Он смог доказать, что существует прямая зависимость между расположением элемента в системе и совокупности его свойств в сравнении с другими типами элементов. В далеком XVII веке он смог предсказать скорое открытие новых элементов, для которых предусмотрительно оставил пустые клеточки в своей таблице.

Гений оказался прав, вскоре последовали новые открытия, за недолгие семьдесят лет были обнаружены еще девять новых элементов, среди которых легкие металлы галлий (Ga) и скандий (Sc), плотный металл рений (Re), полупроводник германий (Ge) и опасный радиоактивный полоний (Po). Кстати, в 1900 году было принято решение о внесении в таблицу инертных газов, которые имеют низкую химическую активность и почти не вступают в реакцию с другими элементами. Их принято называть нулевыми элементами.

Исследование и поиск новых стабильных соединений атомов продолжалось и сейчас в перечне насчитывается 117 химических элементов. Однако происхождение их отличается, только 94 из них были обнаружены в естественной природе, а остальные 23 новых вещества были синтезированы учеными в ходе изучения процессов ядерных реакций. Большинство этих искусственно полученных соединений быстро распадаются на более простые соединения. Поэтому их считают нестабильными химическими элементами и в таблице для них указывают не относительную атомную массу, а массовое число.

У каждого химического элемента есть собственное уникальное название, состоящее из одной или нескольких букв его латинского наименования. Во всех странах мира принята единые правила и символы описания элемента, у каждого обозначено его место и порядковый номер в таблице.

Распространение в космосе

Специалистам современной науки известно, что количество и распределение одних и тех же элементов на планете Земля и в просторах Вселенной очень отличается.

Так, в космосе самыми часто встречающимися соединениями атомов являются водород (H) и гелий (He). В недрах не только далеких звезд, но и нашего светила, идут постоянные термоядерные реакции с участием водорода. Под воздействием немыслимо высоких температур четыре ядра водорода сливаются, образуя гелий. Так из самых простых элементов получаются более сложные. Высвобождающаяся при этом энергия выбрасывается в открытый космос. Все обитатели нашей планеты ощущают эту энергию как свет и тепло солнечных лучей.

Ученые с помощью метода спектрального анализа выяснили, что Солнце на 75% состоит из водорода, на 24 % из гелия и только оставшийся 1% всей огромной массы звезды содержит другие элементы. Также огромное количество молекулярного и атомного водорода рассеяны в кажущемся пустым космическом пространстве.

В составе планет, комет и астероидов обнаруживают кислород, углерод, азот, серу и другие легкие элементы. Часто встречается конечный продукт "жизни" большинства звезд, привычное нам железо. Ведь, как только ядро звезды начинает синтезировать этот элемент, она обречена. Ученые смогли найти в космосе огромное количество лития, причины появления которого до сих пор не изучены. Намного реже встречаются следы таких металлов как золото и титан, они образовываются только при взрывах очень массивных звезд.

А как на нашей планете

На каменистых планетах, подобных Земле, распространение химических элементов совсем другое. Причем они не находятся в статичном состоянии, а постоянно взаимодействуют между собой. Например, на Земле большое количество растворенных газов переносится водами Мирового океана, а живые организмы и их жизнедеятельность привели к значительному увеличению количества кислорода. Путем длительных расчетов ученые определили, что именно этот необходимый для жизни элемент составляет 50% всех веществ на планете. Неудивительно, ведь он входит в состав многих горных пород, соленой и пресной воды, атмосферы и клеток живых организмов. Каждая живая клетка любого создания почти на 65% состоит из кислорода.

На втором месте по распространенности находится кремний, который занимает 25 % всей земной коры. Его невозможно найти в чистом виде, зато в разных пропорциях этот элемент входит в состав всех имеющихся на Земле соединений. А вот водорода, которого так много в космическом пространстве, в земной коре очень мало, всего 0,9 %. В воде его содержание незначительно больше, почти 12 %.

Химический состав атмосферы, коры и ядра нашей планеты довольно разный, например, железо и никель сосредоточены в основном в расплавленном ядре, а основная часть легких газов постоянно находится в атмосфере или воде.

Реже всего на Земле встречается лютеций (Lu), редкий тяжелый элемент, доля которого составляет всего 0,00008 % массы земной коры. Его открыли в 1907 году, но практического применения этот самый тугоплавкий элемент пока не получил.

Источники:

  • Энциклопедия "Кругосвет" Статья "Элементы химические"

    См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

    См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия

    - (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия

    Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия

    Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации

Одни из самых популярных химических вопросов: "Сколько сейчас известно химических элементов?", "Сколько существует химических элементов?", "Кто их открыл?"
Эти вопросы не имеют простого и однозначного ответа.
Что значит "известно"? Встречаются в природе? На земле, в воде, в космосе? Получены и изучены их свойства? Свойства чего? Вещества в виде фаз или только на атомно-молекулярном уровне? Имеющиеся современные технологии позволяют обнаруживать и несколько атомов... Но, по отдельному атому свойства вещества не определить.
А что значит "существуют"? В практическом плане это понятно: наличествуют в природе в таком количестве и столько времени, чтобы они и их соединения могли оказывать реальное влияние на природные явления. Или хотя бы можно было изучить их свойства в лаборатории.
Таковых химических элементов в природе выявлено около 88. Почему около? Потому, что среди элементов с порядковым номером менее 92 (до урана) в природе отсутствуют технеций (43) и франций (87). Практически нет астата (85). Нет прометия (61).
С другой стороны, и нептуний (93) и плутоний (94) (нестабильные трансурановые элементы) обнаруживаются в природе там, где встречаются урановые руды.
Все элементы следующие после плутония Pu в периодической системе Д.И.Менделеева в земной коре практически отсутствуют, хотя некоторые из них несомненно образуются в космосе во время взрывов сверхновых звёзд. Но долго они не живут...
Любопытно открытие франция - элемента № 87. Этот элемент "придумал" Д.И.Менделеев, который, на основе созданной им периодической таблицы, предположил, что в группе щелочных металлов не хватает наиболее тяжёлого названного им экацезием.
Сейчас известно, что франция в земной коре присутствует не более 30 грамм. Это радиоактивный элемент и самый долгоживущий его изотоп франций-210 имеет период полураспада 19,3 минуты.
Франций можно считать последним элементом открытым на Земле как содержащимся в природе (Маргарет Пере, ученица Марии Склодовской-Кюри, в 1929 году; официально признан и получил название в 1938 году).
Все последующие элементы были получены через радиоактивный распад химических элементов и с применением ускорителей заряженных частиц.
К настоящему времени ученые синтезировали 26 трансурановых элементов, начиная с нептуния (N=93) и заканчивая элементом с номером N=118 (номер элемента соответствует числу протонов в ядре атома и числу электронов вокруг ядра атома).
Трансурановые химические элементы от 93 до 100 получают в ядерных реакторах, а остальные - в результате ядерных реакций на ускорителях частиц. Технология получения трансурановых элементов на ускорителях принципиально понятна: разгоняют подходящие положительно заряженные остовы ядрер элементов электрическим полем до нужных скоростей и сталкивают их с мишенью, содержащей другие более тяжёлые элементы - происходят процессы слияния и распада атомных ядер различных элементов. Продукты этих процессов анализируют и делают выводы об образовании новых элементов.
Немецкие ученые из Центра по изучению тяжелых ионов Гельмгольца в серии экспериментов 2013-2014 годов планировали получить следующий, 119 элемент таблицы Менделеева, но потерпели неудачу. Они обстреливали ядра берклия (N=97) ядрами титана (N=22), однако анализ данных эксперимента не подтвердил наличия нового элемента.
В настоящее время можно считать идентифицированным существование ста восемнадцати химических элементов. Сообщения об обнаружении 119-го - первого элемента 8 периода - можно пока считать вероятно достоверными.
Были заявления о синтезе элемента унбиквадий (124) и косвенные свидетельства об элементах унбинилий (120) и унбигексий (126), - но эти результаты ещё находятся в стадии подтверждения.
Сейчас, наконец, все, из официально известных и доказанных на сегодня 118 элементов, имеют утвержденные ИЮПАК общепризнанные названия. Не так давно самым тяжёлым из элементов, имеющих официально признанное название, был 116-й элемент, получивший его в мае 2012 года - ливерморий. Тогда же было официально утверждено название 114-го элемента - флеровий.
Сколько химических элементов вообще можно получить? Теоретически предсказывается возможность синтеза элементов с номерами 121-126. Это числа протонов в ядрах элементов. Проблема нижней границы таблицы Менделеева остаётся одной из важнейших в современной теоретической химии.
У каждого химического элемента имеется несколько изотопов. Изотопы - это атомы в ядрах которых имеется одинаковое число протонов, но разное количество нейтронов. Мир атомных ядер химических элементов очень разнообразен. Сейчас известно около 3500 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём. Вопрос очень интересный - сколько у данного элемента может быть изотопов?
Известно 264 ядра атомов, которые стабильны, то есть не испытывают со временем никаких быстрых самопроизвольных превращений. Распадов.
Остальные ядра в количестве 3236 подвержены различным видам радиоактивного распада: альфа-распаду (испускание альфа-частиц - ядер атома гелия); бета-распаду (одновременное испускание электрона и антинейтрино или позитрона и нейтрино, а также поглощение электрона с испусканием нейтрино); гамма-распаду (испускание фотонов - электромагнитных волн высокой энергии).
Из известных химических элементов периодической системы Менделеева, которые встречаются на Земле, только для 75 имеются точно и общепризнанно установленные авторы их открывшие - обнаружившие и строго идентифицированные. Только при этих условиях - обнаружение и идентификация - признаётся факт открытия химического элемента.
В действительном открытии - выделение в чистом виде и изучении свойств - химических элементов, встречающихся в природе, участвовали учёные всего лишь девяти стран: Швеция (22 элемента), Англия (19 элементов), Франция (15 элементов), Германия (12 элементов). На Австрию, Данию, Россию, Швейцарию и Венгрию приходится открытие остальных 7 элементов.
Иногда указывают Испанию (платина) и Финляндию (иттрий - в 1794 году в шведском минерале из Иттербю финский химик Юхан Гадолин обнаружил оксид неизвестного элемента). Но платина, как благородный металл, была известна в самородном виде с древних времён - в чистом виде из руд платина была получена английским химиком У.Волластоном в 1803 году. Этот учёный более известен как открыватель минерала волластонита.
Металлический иттрий впервые получил в 1828 г. немецкий ученый Фридрих Велер.
Рекордсменом среди "охотников" за химическими элементами можно считать шведского химика К. Шееле - он обнаружил и доказал существование 6-ти химических элементов: фтора, хлора, марганца, молибдена, бария, вольфрама.
К достижениям в находках химических элементов этого учёного можно добавить ещё и седьмой элемент - кислород, но честь открытия которого он официально делит с английским учёным Дж. Пристли.
Второе место в открытии новых элементов принадлежит В.Рамзаю -
английскому или, точнее, шотландскому учёному: им открыты аргон, гелий, криптон, неон, ксенон. Кстати, открытие "гелия" очень оригинально. Это первое не "химическое" открытие химического элемента. Сейчас этот метод называется "Абсорбционная спектрофотометрия". Оно приписывается сейчас У.Рамзаю, но было сделано другими учёными. Так часто бывает.
18 августа 1868 года французский учёный Пьер Жансен, при полном солнечном затмении в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Он настроил спектроскоп таким образом, что спектр короны Солнца удалось наблюдать не только при затмении, но и в обычные дни. Он выявил наряду с линиями водорода - синей, зелено-голубой и красной - яркую жёлтую линию, первоначально принятую им за линию натрия. Жансен написал об этом во Французскую академию наук.
Впоследствии было установлено, что эта ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.
Через 27 лет после этого первоначального открытия гелий был обнаружен на Земле - в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому учёному-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия.
23 марта 1895 года Рамзай отправил сообщение о своём открытии гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло. Так и получилось название этого химического элемента. От древнегреческого наименования солнечного божества - Гелиос. Первое открытие сделанное спектральным методом. Абсорбционная спектроскопия.
Во всех случаях у Рамзая были соавторы: В.Крукс (Англия) - гелий; В. Рэлей (Англия) - аргон; М. Траверс (Англия) - криптон, неон, ксенон.
По 4 элемента обнаружили:
И. Берцелиус (Швеция) - церий, селен, кремний, торий;
Г. Деви (Англия) - калий, кальций, натрий, магний;
П. Лекок де Буабодран (Франция) - галлий, самарий, гадолиний, диспрозий.
На долю России приходится открытие только одного из природных элементов: рутения (44). Название этого элемента происходит от позднелатинского названия России - Ruthenia. Этот элемент открыл профессор Казанского университета Карл Клаус в 1844 году.
Карл-Эрнст Карлович Клаус был русским химиком, автором ряда трудов по химии металлов платиновой группы, первооткрывателем химического элемента рутения. Он родился в 11 (22) января 1796 - 12 (24) марта 1864) в Дерпте, старинном русском городе Юрьеве (ныне Тарту), в семье художника. В 1837 году защитил диссертацию на степень магистра и был назначен адъюнктом по кафедре химии в Казанском университете. С 1839 года стал профессором химии Казанского университета, а с 1852 года – профессором фармации Дерптского университета. В 1861 году стал Членом-корреспондентом Петербургской Академии наук.
То, что большинство известных в природе химических элементов, было открыто учёными Швеции, Англии, Франции и Германии, вполне понятно - в 18-19 веках, когда и были открыты эти элементы, именно в данных странах был наиболее высокий уровень развития химии и химической технологии.
Ещё любопытен вопрос: а женщины-учёные открывали химические элементы?
Да. Но немного. Это Мария Складовская-Кюри, открывшая в 1898 году вместе с мужем П.Кюри полоний (название дано в честь её родины Польши) и радий, Лиза Мейтнер, принимавшая участие в открытии протактиния (1917 год), Ида Ноддак (Такке), обнаружившая в 1925 году совместно с будущим мужем В.Ноддаком рений, и Маргарита Перей, за которой в 1938 году было официально признано открытие элемента франция и она стала первой женщиной, избранной во Французскую академию наук (!!!).
В современной таблице Менделеева имеется несколько элементов, помимо рутения, названия которых связанны с Россией: самарий (63) - от названия минерала самарскита, открытого русским горным инженером В.М.Самарским в Ильменских горах, менделеевий (101); дубний (105). История названия этого элемента любопытна. Впервые этот элемент был получен на ускорителе в Дубне в 1970 году группой Г.Н.Флёрова путём бомбардировки ядер 243Am ионами 22Ne и независимо в Беркли (США) в ядерной реакции 249Cf + 15N = 260Db + 4n.
Советские исследователи предложили назвать новый элемент нильсборием (Ns), в честь великого датского учёного Нильса Бора, американцы - ганием (Ha), в честь Отто Гана, одного из авторов открытия спонтанного деления урана.
Рабочая группа ИЮПАК в 1993 году сделала вывод, что честь открытия элемента 105 должна быть разделена между группами из Дубны и Беркли. Комиссия ИЮПАК в 1994 году предложила название жолиотий (Jl), в честь Жолио-Кюри. До этого элемент официально назывался латинским числительным - уннилпентиумом (Unp), то есть просто 105-м элементом. Символы Ns, На, Jl можно и сейчас видеть в таблицах элементов, изданных в прежние годы. Например, на ЕГЭ по химии 2013 года. Согласно окончательному решению ИЮПАК в 1997 году этот элемент получил название "дубний" - в честь российского центра по исследованиям в области ядерной физики, наукограда Дубны.
В Объединенном институте ядерных исследований Дубны в разное время были впервые синтезированы сверхтяжелые химические элементы с порядковыми номерами 113–118. Элемент под номером 114 был назван "флеровий" - в честь Лаборатории ядерных реакций им. Г.Н.Флёрова Объединённого института ядерных исследований, где и был синтезирован этот элемент.
За последние 50 лет Периодическая система Д.И. Менделеева пополнилась 17 новыми элементами (102–118), из которых в ОИЯИ синтезировано 9. В том числе в последние 10 лет – 5 наиболее тяжелых (сверхтяжелых) элементов, замыкающих периодическую таблицу…
Впервые 114-й элемент - с "магическим" числом протонов (магические числа - ряд натуральных чётных чисел, соответствующих количеству нуклонов в атомном ядре, при котором становится полностью заполненной какая-либо его оболочка: 2, 8, 20, 28, 50, 82, 126 (последнее число - только для нейтронов) - был получен группой физиков под руководством Ю.Ц.Оганесяна в Объединённом институте ядерных исследований (Дубна, Россия) с участием учёных из Ливерморской национальной лаборатории (Ливермор, США; коллаборацией Дубна-Ливермор) в декабре 1998 года путём синтеза изотопов этого элемента посредством реакции слияния ядер кальция с ядрами плутония. Название 114-го элемента было утверждено 30 мая 2012 года: "флеровий" (Flerovium) и символическое обозначение Fl. Тогда же был назван 116 элемент – "ливерморий" (Livermorium) – Lv (кстати, время жизни этого элемента – 50 миллисекунд).
В настоящее время синтез трансурановых элементов в основном проводится в четырех странах: США, России, Германии и Японии. В России новые элементы получают в Объединенном институте ядерных исследований (ОИЯИ) в Дубне, в США - в Национальной лаборатории Оук-Ридж в Теннеси и Национальной лаборатории Лоуренса в Ливерморе, в Германии - в Центре по изучению тяжелых ионов Гельмгольца (он же - Институт тяжелых ионов) в Дармштадте, в Японии - в Институте физико-химических исследований (RIKEN).
За авторство создания 113-го элемента давно шла борьба между Японией и российско-американской группой ученых. Японские ученые во главе с Косукэ Моритой синтезировали 113-й элемент в сентябре 2004 года, разогнав на ускорителе и столкнув цинк-30 и висмут-83. Им удалось зафиксировать три цепочки распада, соответствующие цепочкам рождения 113-го элемента в 2004, 2005 и 2012 годах.
Российские и американские ученые объявили о создании 113-го элемента в процессе синтеза 115-го элемента в Дубне в феврале 2004 года и предложили назвать его беккерелием. По имени выдающегося физика Антуана Анри Беккереляя (фр. Antoine Henri Becquerel; 15 декабря 1852 - 25 августа 1908) - французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности.
Наконец, в начале 2016 года в периодическую таблицу Менделеева официально добавлены названия четырёх новых химических элементов. Элементы с атомными номерами 113, 115, 117 и 118 верифицированы Международным союзом теоретической и прикладной химии (IUPAC).
Честь открытия 115-го, 117-го и 118-го элементов присуждена команде российских и американских ученых из Объединенного института ядерных исследований в Дубне, Ливерморской национальной лаборатории в Калифорнии и Окриджской национальной лаборатории в Теннесси.
До последнего времени эти элементы (113, 115, 117 и 118) носили не самые звучные названия унунтрий (Uut), унунпентий (Uup), унунсептий (Uus) и унуноктий (Uuo), однако в течение ближайших пяти месяцев первооткрыватели элементов смогут дать им новые, окончательные имена.
Открывателями 113-го элемента официально признаны ученые из японского Института естественных наук (RIKEN). В честь этого элемент рекомендовали назвать "японием". Право придумать названия остальным новым элементам предоставлено первооткрывателям, на что им отводилось пять месяцев, после чего их официально утвердит совет IUPAC.
115-й элемент предложено назвать "московием" в честь Подмосковья!
Свершилось! 8 июня 2016 года Международный союз теоретической и прикладной химии озвучил рекомендованные названия для 113-го, 115-го, 117-го и 118-го элементов таблицы Менделеева. Об этом сообщается на сайте союза.
Один из новых сверхтяжелых элементов таблицы Менделеева за номером 113 официально получил название "нихоний" и символ Nh. Соответствующее объявление сделал японский институт естественных наук "Рикэн", специалисты которого ранее открыли этот элемент.
Слово "нихоний" является производным от местного названия страны - "Нихон".
Международный союз теоретической и прикладной химии утвердил названия новым элементом за номерами 113, 115, 117 и 118 - нихоний(Nh), московий (Mc), тенессин (Ts) и оганессон (Og).
113-й элемент назван в честь Японии, 115-й - в честь Московской области, 117-й - по названию американского штата Теннеси, 118-й - в честь российского ученого академика РАН Юрия Оганесяна.
В 2019 году Россия и весь мир отмечают 150-летие открытия Дмитрием Ивановичем Менделеевым периодической таблицы и закона, послужившего основой современной химии.
В честь юбилея Генеральная ассамблея ООН единогласно приняла решение о проведении Международного года Периодической системы элементов Менделеева.
"Что дальше?" - спрашивает Юрий Оганесян - научный руководитель лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне, где были открыты последние пять элементов периодической таблицы, в том числе и элемент-118, оганесон.
"Понятно, что на этом таблица Менделеева не заканчивается и нужно попробовать получить 119-й и 120-й элементы. Но для этого придется совершить ту же технологическую революцию, которая помогла нам вырваться в лидеры в 1990-е годы, повысить интенсивность пучка частиц на несколько порядков и сделать детекторы настолько же более чувствительными", - подчеркивает физик.
К примеру, сейчас ученые получают один атом флеровия в неделю, обстреливая мишень триллионами частиц в секунду. Более тяжелые элементы (скажем, оганесон) удается синтезировать лишь раз в месяц. Соответственно, работа на нынешних установках потребует астрономически много времени.
Эти трудности российские исследователи рассчитывают преодолеть при помощи циклотрона ДЦ-280, запущенного в декабре прошлого года. Плотность вырабатываемого им пучка частиц в 10-20 раз выше, чем у предшественников, что, как надеются отечественные физики, позволит создать один из двух элементов ближе к концу года.
Первым, скорее всего, синтезируют 120-й элемент, так как калифорниевая мишень, необходимая для этого, уже была подготовлена в американской Национальной лаборатории в Ок-Ридже. Пробные пуски ДЦ-280, нацеленные на решение этой задачи, пройдут в марте этого года.
Ученые считают, что постройка нового циклотрона и детекторов поможет приблизиться к ответу на еще один фундаментальный вопрос: где перестает действовать периодический закон?"
"Есть ли разница между синтетическим и естественным элементом? Когда мы открываем их и вписываем в таблицу, там ведь не указано, откуда они взялись. Главное, чтобы они подчинялись периодическому закону. Но сейчас об этом, как мне кажется, уже можно говорить в прошедшем времени", - отмечает Оганесян.

Слово «элемент» в переводе значит «стихия». А что такое химический элемент? Это некая часть, которая является самостоятельной, и при этом является основой чего-либо. Еще античные ученые, такие как Гораций и Цицерон это слово использовали в том самом смысле, в котором оно используется в наше время.

Рассмотрим детально

Множество атомов, которые имеют одинаковый заряд ядра, число протонов и совпадают с порядковым номером в таблице Менделеева, называются химическим элементом. В своей Периодической системе элементов Менделеев упорядочил химические элементы, каждый из них имеет свой символ и свое название.

Сегодня, что такое химический элемент, должен знать каждый ученик, который начал в школе учить химию. Он должен знать символы химических элементов, которые обозначают: название элемента, один атом элемента и один моль атомов этого элемента.

Для названий химических элементов используют сокращенные символы химических элементов. Сначала используют первую букву названия химического элемента, а если нужно, то добавляют еще одну. Впереди стоит цифра, которая обозначает число атомов или молей атомов того или иного химического элемента.

Не перепутайте

Не нужно путать определения химического элемента и химического вещества. Это разные понятия. Химическое вещество состоит из химических элементов, может состоять из одного, а может из разных.

Восемьдесят восемь элементов найдены в природе, а все остальные выведены искусственно.